Characterization of the explosion time
for the Komatu-Loewner evolution

Takuya Murayama (Kyoto University)

1 Introduction

The Komatu-Loewner equation (K-L equation for short) is a correspondence to the Loewner equation
in multiply connected domains. Bauer and Friedrich [1] established its concrete expression in standard
slit domains of the upper half plane H, and then, Chen, Fukushima et al. [2], [3], [4] investigated some
properties of the Komatu-Loewner evolution generated by it.

In this talk, I will give a behavior of the image domain at the exlplosion time of this evolution, which is
a refinement of a part of the study in [1]. The proof is based on a probabilistic expression of the solution
that was developed in [2], [3] and [4], together with a general theory of complex analysis.

2 Notation and main results

We fix N € N. Let C; C H, 1 < j < N, be slits parallel to the real axis and K := U;‘V:1 Cj. We call a
domain of the form H\ K a standard slit domain. The left and right end points of the slit C; are denoted
by z; = x; +iy; and 2z = x} + iy, respectively. The slits {C;;1 < j < N} are identified with a vector
S= (Y1, -, YN L1, -, TN, L], ..., ZTN) € R3YN. We define the set S of all such “slit vectors” in R3V as

Si={s= W1, YN, T1,. ., TN, T], ..., TN );y; >0, and z; < 2 or x < if y; =y ( # k)}-

The slits and standard slit domain determined by s € S are denoted by C;(s), 1 < j < N, and D(s),
respectively.

Take a standard slit domain D = D(s) and a simple curve v : [0,¢,) — D satisfying v(0) € 0H and
7(0,t,) C D. For each t € [0,t,), there is a unique conformal map g; from D onto another standard slit
domain D; = D(s(t)) with the hydrodynamic normalization

a
gt(2) =z + ;t + 0(271), Z — 00,

for some a; > 0. The image (1) := g:(v(t))(= lim._ () g9¢(2)) € OH of the terminal point ~(t) is called
the driving function of g;. The quantity a;, called the half plane capacity of the set ¥[0, ¢] relative to gy, is
strictly increasing and continuous in ¢. Thus we can reparametrize the curve v in such a way that a; = 2¢.
Under these settings, g;(z) satisfies the following K-L equation:

%gt(z) = =210y (9:(2),€(1), go(2) =z € D. (1)

The function Us(-, w) = ¥p(-,w), w € OH, is the conformal map from D onto some standard slit domain

with w mapped to oo, 0o to 0 and ¥p(z,w) ~ —7 1 (z —w)~ ! as z — w.
Since ¥y (z,w) = —m (2 — w)~!, the celebrated Loewner equation
d 2
—gi(2) = ————, z) =z € H,

corresponds to the K-L equation in D = H.
The end points 2;(t) = x;(t) + iy;(t) and 27 (t) = 2}(t) + iy;(t) of the slits C;, = C;(s(t)) also satisfy
the K-L equation for slits:

%yj(t) = —QWS\PS(t)(Zj(t)vg(t))7
%xj(t) = —2mRW) (25(1), £(1)), @



We now follow this procedure in the opposite direction. Namely, for a given driving function £ €
C([0,0);R), we first solve the K-L equation (2) for slits s(¢) and then solve (1) for g;(z), z € D. We
denote by t¢ the explosion time for the ODEs (2) and put F; := {z € D;t, < t}, t < t¢, where

t: =te Asup{t > 0;[g:(z) —£()[ > 0}, z€ D,

is the explosion time of g;(z). It is possible to check that g, t € [0,t¢), is a unique conformal map from
D\ F; onto D; = D(s(t)) satisfying the hydrodynamic normalization with a; = 2¢. The bounded set F}
is not necessarily a curve but a (compact) H-hull in the sense that F; = H N Fy and that H \ F; is simply
connected. We call both g, and F; the Komatu—Loewner evolution driven by &(t).

It is a natural problem what happens if ¢¢ is finite. A reasonable guess is that the evolution F; should
hit the slits | J; C; at the time ¢¢. In terms of the slits Cj; = C;(s(t)) of Dy, this means that C;; is absorbed
into the real axis for some j as claimed in [1, Theorem 4.1]. Justifying this description is, however, not
trivial because the solution to (2) belongs to the space of slits S, not R3Y | and the slits C; ; may degenerate
to one point or collide with each other before reaching OH.

Our main theorem justifies the above description in the following manner:

Theorem 1. Let R(w,s) := min; <<y dist(C;(s), w) forw € OH ands € S. Ifts < oo, then it holds that
limg ~;, R(£(t),s(t)) = 0.

For the proof, it suffices to extend the solution s(t) beyond ¢, if the conclusion does not hold. To this
end, we interpret the complicated evolution g; and F} in D as a simpler one g9 and Fy in H by “forgetting the
slits,” the technique employed in [4]. g and F; extend to a Loewner evolution in H over the time interval
[0,2¢]. Then, by a version of Carathéodory’s kernel theorem (cf. [5, Theorem 15.4.7]), {g: o (¢9) 71t < t¢}
extends to a family of conformal maps over [0,t¢]. This implies that the limit s(t¢) = lim; ~;, s(t) still
represents NN slits in H, which is a contradiction.

If time permits, I will provide an example where the explosion time for the stochastic Komatu—Loewner
evolution (SKLE) is finite with probability one. We define the domain constant k as

1 1
k(w,s) := 2w lim <\I/s(z7w)+ ) , wedH,seS.

zZ—w mTZ =W

SKLE /6.1 18 @ K-L evolution driven by the random function £ determined by the system of SDEs (2) and

de(t) = —k(£(t), s(t))dt + V6dB; (3)
where B; is a one-dimensional standard Brownian motion. Then we have the following:
Proposition 2. Let ¢ be the explosion time for the SDEs (2) and (3). It holds that { < oo almost surely.

This is proven by interpreting SLE¢ as SKLE s, i.e., “recalling the slits,” which is an idea in the
opposite direction to the proof of Theorem 1.
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