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1 Introduction

The Komatu–Loewner equation (K–L equation for short) is a correspondence to the Loewner equation
in multiply connected domains. Bauer and Friedrich [1] established its concrete expression in standard
slit domains of the upper half plane H, and then, Chen, Fukushima et al. [2], [3], [4] investigated some
properties of the Komatu–Loewner evolution generated by it.

In this talk, I will give a behavior of the image domain at the exlplosion time of this evolution, which is
a refinement of a part of the study in [1]. The proof is based on a probabilistic expression of the solution
that was developed in [2], [3] and [4], together with a general theory of complex analysis.

2 Notation and main results

We fix N ∈ N. Let Cj ⊂ H, 1 ≤ j ≤ N , be slits parallel to the real axis and K :=
∪N

j=1 Cj . We call a
domain of the form H \K a standard slit domain. The left and right end points of the slit Cj are denoted
by zj = xj + iyj and zrj = xr

j + iyj respectively. The slits {Cj ; 1 ≤ j ≤ N} are identified with a vector

s = (y1, . . . , yN , x1, . . . , xN , xr
1, . . . , x

r
N ) ∈ R3N . We define the set S of all such “slit vectors” in R3N as

S := {s = (y1, . . . , yN , x1, . . . , xN , xr
1, . . . , x

r
N ); yj > 0, and xj < xr

k or xk < xr
j if yj = yk (j ̸= k)}.

The slits and standard slit domain determined by s ∈ S are denoted by Cj(s), 1 ≤ j ≤ N , and D(s),
respectively.

Take a standard slit domain D = D(s) and a simple curve γ : [0, tγ) → D satisfying γ(0) ∈ ∂H and
γ(0, tγ) ⊂ D. For each t ∈ [0, tγ), there is a unique conformal map gt from D onto another standard slit
domain Dt = D(s(t)) with the hydrodynamic normalization

gt(z) = z +
at
z

+ o(z−1), z → ∞,

for some at ≥ 0. The image ξ(t) := gt(γ(t))(= limz→γ(t) gt(z)) ∈ ∂H of the terminal point γ(t) is called
the driving function of gt. The quantity at, called the half plane capacity of the set γ[0, t] relative to gt, is
strictly increasing and continuous in t. Thus we can reparametrize the curve γ in such a way that at = 2t.
Under these settings, gt(z) satisfies the following K–L equation:

d

dt
gt(z) = −2πΨs(t)(gt(z), ξ(t)), g0(z) = z ∈ D. (1)

The function Ψs(·, w) = ΨD(·, w), w ∈ ∂H, is the conformal map from D onto some standard slit domain
with w mapped to ∞, ∞ to 0 and ΨD(z, w) ∼ −π−1(z − w)−1 as z → w.

Since ΨH(z, w) = −π−1(z − w)−1, the celebrated Loewner equation

d

dt
gt(z) =

2

gt(z)− ξ(t)
, g0(z) = z ∈ H,

corresponds to the K–L equation in D = H.
The end points zj(t) = xj(t) + iyj(t) and zrj (t) = xr

j(t) + iyj(t) of the slits Cj,t = Cj(s(t)) also satisfy
the K–L equation for slits:

d

dt
yj(t) = −2πℑΨs(t)(zj(t), ξ(t)),

d

dt
xj(t) = −2πℜΨs(t)(zj(t), ξ(t)),

d

dt
xr
j(t) = −2πℜΨs(t)(z

r
j (t), ξ(t)).

(2)
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We now follow this procedure in the opposite direction. Namely, for a given driving function ξ ∈
C([0,∞);R), we first solve the K–L equation (2) for slits s(t) and then solve (1) for gt(z), z ∈ D. We
denote by tξ the explosion time for the ODEs (2) and put Ft := {z ∈ D; tz ≤ t}, t < tξ, where

tz = tξ ∧ sup{t > 0; |gt(z)− ξ(t)| > 0}, z ∈ D,

is the explosion time of gt(z). It is possible to check that gt, t ∈ [0, tξ), is a unique conformal map from
D \ Ft onto Dt = D(s(t)) satisfying the hydrodynamic normalization with at = 2t. The bounded set Ft

is not necessarily a curve but a (compact) H-hull in the sense that Ft = H ∩ Ft and that H \ Ft is simply
connected. We call both gt and Ft the Komatu–Loewner evolution driven by ξ(t).

It is a natural problem what happens if tξ is finite. A reasonable guess is that the evolution Ft should
hit the slits

∪
j Cj at the time tξ. In terms of the slits Cj,t = Cj(s(t)) of Dt, this means that Cj,t is absorbed

into the real axis for some j as claimed in [1, Theorem 4.1]. Justifying this description is, however, not
trivial because the solution to (2) belongs to the space of slits S, not R3N , and the slits Cj,t may degenerate
to one point or collide with each other before reaching ∂H.

Our main theorem justifies the above description in the following manner:

Theorem 1. Let R(w, s) := min1≤j≤N dist(Cj(s), w) for w ∈ ∂H and s ∈ S. If tξ < ∞, then it holds that
limt↗tξ R(ξ(t), s(t)) = 0.

For the proof, it suffices to extend the solution s(t) beyond tξ if the conclusion does not hold. To this
end, we interpret the complicated evolution gt and Ft inD as a simpler one g0t and Ft inH by “forgetting the
slits,” the technique employed in [4]. g0t and Ft extend to a Loewner evolution in H over the time interval
[0, tξ]. Then, by a version of Carathéodory’s kernel theorem (cf. [5, Theorem 15.4.7]), {gt ◦ (g0t )−1; t < tξ}
extends to a family of conformal maps over [0, tξ]. This implies that the limit s(tξ) = limt↗tξ s(t) still
represents N slits in H, which is a contradiction.

If time permits, I will provide an example where the explosion time for the stochastic Komatu–Loewner
evolution (SKLE) is finite with probability one. We define the domain constant k as

k(w, s) := 2π lim
z→w

(
Ψs(z, w) +

1

π

1

z − w

)
, w ∈ ∂H, s ∈ S.

SKLE√
6,k is a K–L evolution driven by the random function ξ determined by the system of SDEs (2) and

dξ(t) = −k(ξ(t), s(t))dt+
√
6dBt (3)

where Bt is a one-dimensional standard Brownian motion. Then we have the following:

Proposition 2. Let ζ be the explosion time for the SDEs (2) and (3). It holds that ζ < ∞ almost surely.

This is proven by interpreting SLE6 as SKLE√
6,k, i.e., “recalling the slits,” which is an idea in the

opposite direction to the proof of Theorem 1.
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