
A RELATION BETWEEN MODELED DISTRIBUTIONS

AND PARACONTROLLED DISTRIBUTIONS

MASATO HOSHINO (WASEDA UNIVERSITY)

In the field of singular SPDEs, there are two big theories: the theory of
regularity structures [4] by Hairer and the paracontrolled calculus [2] by Gu-
binelli, Imkeller and Perkowski. These two theories are based on a common
principle but composed of different mathematical tools. Therefore we can
use either of them according to the situation. For example, the former is
useful to show a universal property of a large number of SPDEs (e.g. [5, 6]),
and the latter is useful to get more detailed information of a specific SPDE
(e.g. [3, 7]). However, there is a gap between the two theories about the
range of application. For example, the Hairer’s theory can be applied to the
3-dimensional parabolic Anderson model

(∂t −∆)u(t, x) = u(t, x)ξ(x), t > 0, x ∈ T3,

for ξ ∈ C−3/2−ϵ(T3) with ϵ > 0, but the GIP theory cannot be.
In this talk, we discuss how to overcome this gap. Recently, Bailleul and

Bernicot [1] are tying to improve the GIP theory. Our plan is to complete
their work by combining the essence of the Hairer’s theory. There is a differ-
ence between both theories about the definition of solutions. In the Hairer’s
theory, the solution is defined as a modeled distribution, which represents a
local behavior of the solution. In the GIP theory, the solution is defined as
a paracontrolled distribution, which is defined by nonlocal operators. Each
definition has an advantage to each other. We compare these two notions
and aim to find a better way.
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