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We consider the invariant measure and flow for the stochastic quantization equa-
tion associated to the Φ4

3-model on the torus, which appears in quantum field the-
ory. By virtue of Hairer’s breakthrough, such nonlinear stochastic partial differential
equations became solvable and are intensively studied now. In this talk, we present a
direct construction to both a global solution and invariant measure for this equation.

Letm0 > 0, Λ be the 3-dimensional torus i.e. Λ = (R/Z)3, and µ0 be the centered
Gaussian measure on the space of Schwartz distributions S ′(Λ) with the covariance
operator [2(−△+m2

0)]
−1. We remark that µ0 is different from the Nelson’s Euclidean

free field measure by the scaling
√
2. In order to adjust our setting to those of known

results, we define µ0 as above. In the constructive quantum field theory, there was
a problem to construct a measure

µ(dϕ) = Z−1 exp (−U(ϕ))µ0(dϕ)

where

U(ϕ) =

∫
Λ

(
1

4
ϕ(x)4 − Cϕ(x)2

)
dx

and Z is the normalizing constant. Since the support of µ0 is in the space of tempered
distributions, ϕ4 and ϕ2 are not defined in usual sense. So, we approximate ϕ and
take the limit.

Let ⟨f, g⟩ be the inner product on L2(Λ;C). For k ∈ Zd, define ek(x) := e2πik·x

where k · x := k1x1 + k2x2 + k3x3. For N ∈ N, denote {j ∈ Z; |j| ≤ N} by ZN , and
let PN be the mapping from S ′(Λ) to L2(Λ;C) given by

PNϕ :=
∑
k∈Z3

N

⟨ϕ, ek⟩ek.

Define a function UN on S ′(Λ) by

UN(ϕ) =

∫
Λ

{
1

4
(PNϕ)(x)

4 − 3

2

(
C

(N)
1 − 3C

(N)
2

)
(PNϕ)(x)

2

}
dx

where

C
(N)
1 =

1

2

∑
k∈Z3

N

1

k2 +m2
0

, C
(N)
2 =

1

2

∑
l1,l2∈Z3

N

1

(l21 +m2
0)(l

2
2 +m2

0)(l
2
1 + l22 + (l1 + l2)2 + 3m2

0)
.

We remark that limN→∞ C
(N)
1 = limN→∞ C

(N)
2 = ∞, and C

(N)
1 and C

(N)
2 are called

renormalization constants. Consider the probability measure µN on S ′(Λ) given by

µN(dϕ) = Z−1
N exp (−UN(ϕ))µ0(dϕ)



where ZN is the normalizing constant. We remark that {µN} is the approximation
sequence of the Φ4

3-measure which will be constructed below as the invariant measure
of the associated flow.

Now we consider the stochastic quantization equation associated to {µN} as
follows.

dX̃N
t (x) = dWt(x)− (−△+m2

0)X̃
N
t (x)dt

−
{
PN [(PNX̃

N
t )3](x)− 3

(
C

(N)
1 − 3C

(N)
2

)
PNX̃

N
t (x)

}
dt

X̃N
0 (x) = ξN(x)

where Wt(x) is a white noise with parameter (t, x) ∈ [0,∞) × Λ and ξN(x) is a
random variable which has µN as the law, and independent of Wt. We remark that
µN is the invariant measure with respect to the semigroup generated by the solution
to the equation. Let XN := PNX̃

N for N ∈ N. Then, XN satisfies the stochastic
partial differential equation

dXN
t (x) = PNdWt(x)− (−△+m2

0)X
N
t (x)dt

−
{
PN [(X

N
t )3](x)− 3(C

(N)
1 − 3C

(N)
2 )XN

t (x)
}
dt

XN
0 (x) = PNξN(x)

(1)

To apply the Hairer’s reconstruction method, which enables us to transform (1)
for a solvable partial differential equation, we supplementary introduce the infinite-
dimensional Ornstein-Uhlembeck process Z as follows. Let Z be the solution to the
stochastic partial differential equation on Λ{

dZt(x) = dWt(x)− (−△+m2
0)Zt(x)dt, (t, x) ∈ [0,∞)× Λ

Z0(x) = ζ(x), x ∈ Λ

where ζ is a random variable which has µ0 as its law and is independent of Wt and
ξN . Let X

N,(2)
t := XN

t −Z(1,N)
t + Z(0,3,N)

t for t ∈ [0,∞) where

Z(0,3,N)
t :=

∫ t

0

e(t−s)(△−m2
0)
(
PN(PNZs)

3 − 3CN
1 PNZs

)
ds, t ∈ [0,∞),

and decompose XN,(2) into XN,(2),< and XN,(2),⩾ by means of paraproduct. Then,
we have a solvable, coupled, semilinear and dissipative parabolic partial differential
equation, which the pair (XN,(2),<, XN,(2),⩾) satisfies. By applying the technique
of the semilinear and dissipative parabolic equation, we obtain some estimates for
XN,(2),< and XN,(2),⩾, which yields the tightness of XN,(2). As the result we obtain
the following theorem for the Φ4

3-measure and the associated flow.

Theorem 1. For ε ∈ (0, 1] sufficiently small, {XN} is tight on C([0,∞);B
−1/2−ε
4/3 ),

where Bs
p,r is the Besov space. Moreover, if X is a limit of a subsequence {XN(k)}

of {XN} on C([0,∞);B
−1/2−ε
4/3 ), then X is a continuous Markov process on B

−1/2−ε
4/3 ,

the limit measure µ of the associated subsequence {µN(k)} is an invariant measure
with respect to X and it holds that∫

∥ϕ∥4
B

−1/2−ε
4

µ(dϕ) < ∞.


