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We consider the invariant measure and flow for the stochastic quantization equa-
tion associated to the ®i-model on the torus, which appears in quantum field the-
ory. By virtue of Hairer’s breakthrough, such nonlinear stochastic partial differential
equations became solvable and are intensively studied now. In this talk, we present a
direct construction to both a global solution and invariant measure for this equation.

Let mg > 0, A be the 3-dimensional torusi.e. A = (R/Z)?, and o be the centered
Gaussian measure on the space of Schwartz distributions S’(A) with the covariance
operator [2(—A+m2)]~!. We remark that g is different from the Nelson’s Euclidean
free field measure by the scaling v/2. In order to adjust our setting to those of known
results, we define pg as above. In the constructive quantum field theory, there was
a problem to construct a measure

w(dg) = Z7 " exp (—U(¢)) po(do)

e v - | G¢(fc)4 - c¢<x>2) da

and Z is the normalizing constant. Since the support of y is in the space of tempered
distributions, ¢* and ¢? are not defined in usual sense. So, we approximate ¢ and
take the limit.

Let (f,g) be the inner product on L*(A;C). For k € Z¢, define e,(z) := e2™F*
where k - x := kyjxq + koo + ksxs. For N € N, denote {j € Z;|j| < N} by Zy, and
let Py be the mapping from S'(A) to L*(A; C) given by

Pyg:=> (o ex)er.

keZ3;

Define a function Uy on S’'(A) by

uto) = [ 3o -3 (e -300) (v ao

where
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We remark that limy_,oo C’fN) = limpy_o C’éN) = 00, and C’fN) and C’éN) are called
renormalization constants. Consider the probability measure uy on S’(A) given by

pn (do) = Zy" exp (—Un(9)) po(do)



where Zy is the normalizing constant. We remark that {ux} is the approximation
sequence of the ®3-measure which will be constructed below as the invariant measure
of the associated flow.

Now we consider the stochastic quantization equation associated to {un} as
follows.

dXN(z) = dWy(z) — (=A +m2) XN (z)dt

—{Pul(Py XY )(@) = 3 (€Y = 3CEY) P XN (2) } at
Xo'(x) =én(x)
where W;(z) is a white noise with parameter (¢,z) € [0,00) x A and &x(x) is a
random variable which has py as the law, and independent of W;. We remark that
pn is the invariant measure with respect to the semigroup generated by the solution

to the equation. Let XV := PyX" for N € N. Then, XV satisfies the stochastic
partial differential equation

dXN(z) = PydWi(z) — (=A +md) XN ()dt

—{Pul(xY(@) - 3™ = 3ei XY @) par ()

Xy (z) = Pyén(z)
To apply the Hairer’s reconstruction method, which enables us to transform (1)
for a solvable partial differential equation, we supplementary introduce the infinite-

dimensional Ornstein-Uhlembeck process Z as follows. Let Z be the solution to the
stochastic partial differential equation on A

{ dZy(z) = dWy(z) — (=D +md)Z,(x)dt, (t,x) €[0,00) x A
Zo(x) = ((x), x €A

where ( is a random variable which has g as its law and is independent of W, and
En. Let XV = xN -z 4 2O3N) 04 € 10, 00) where

t
ZO3N) / N A=mE) (P (PyZ,)? — 3CN Py Z,) ds, t € [0,00),
0

and decompose XV® into X< and XN(2> by means of paraproduct. Then,
we have a solvable, coupled, semilinear and dissipative parabolic partial differential
equation, which the pair (XV:®:< XN:2)2) satisfies. By applying the technique
of the semilinear and dissipative parabolic equation, we obtain some estimates for
XN@)< and XN(2)> which yields the tightness of X2 As the result we obtain

the following theorem for the ®3-measure and the associated flow.
Theorem 1. For ¢ € (0, 1] sufficiently small, {X™} is tight on C([0, c0); B;/g/%g)}
where B, . is the Besov space. Moreover, if X is a limit of a subsequence {XN(’“)}

of {XN} on C(]0, 00); BZ/;/2_E), then X is a continuous Markov process on BZ/I:,)/Q_a,

the limit measure ji of the associated subsequence {Ln@} i an invariant measure
with respect to X and it holds that

[0l i) < oo



