Renormalized Gibbs measures and applications to QFT
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This is a joint work with Oliver Matte in Aalborg university [5]. The Nelson Hamilto-
nian with UV (ultraviolet) cutoff parameter € > 0 is given by

H.=H,® 1+ 1® Hy + gp(0:(- — x)).

Here H, = —1A +V(z) is a Schrédinger operator. The operator Hy = dI'(w(—iV)) is the
free field Hamiltonian and ¢(o.(- — z)) is a Gaussian random variable with cutoff function
given by
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E. Nelson [7] introduces the renormalization term:
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Here we noice that E. — —oo as € | 0. It is shown in [8, 7, 1] that there exists a self-adjoint
operator H,e, such that

lim ¢~ T(He=9*Ee) — o~THren
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The important fact is that we can not see the explicit form of Hyen, it is however shown
in [3] that H,e, has the ground state, and it is unique by [6]. Let ¥y be the ground state

of Hyen. Let 0 < ¢ € L?(R3) and since (¢ ® 1, U,) # 0, we have
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for any bounded operators O. On the Wiener space (€2, F, W) the finite volume Gibbs
measure is defined by

pr(A) = 1T [ doy [nm(BT)qb(BT)e"fSreﬂ

for A € F, where (B;):cr is BM on the whole line. For some O it follows that (g, OW,) =

Tlim E.,[Or] with some integrant Or. Let Fi_ggq = o(By,r € [-5,5]) and we set
—00

G = 0(Us>0F|-s,5))-

Theorem 0.1 [/, 2, 5] There exists a probability measure po on (2, G) such that ur —

foo as T — o0 in the local weak sense. Le., ur(A) — poo(A) for A € Fi_g g for arbitrary
S.



We show several applications in terms of infinite volume Gibbs measure jio in [5].
(1.Super exponential decay of the number of bosons) Let N, be the truncated
number operator. Then

(qjg7 e+ﬂNA\Ijg) g E;uoo [67(176+ﬁ) ono ds fooo dtWA] < 00

for all g > 0.
(2. Gaussian decay) It follows that
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In particular (\Ilg,eﬁ¢(f)2‘lfg) < oo for B < 1/(2|f|I?) and
(3. Spatial decay) We have by [6]

(W, 6+5¢(f)2‘1’g) =
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Here Upr = —% fo eme %Bsds and F = inf 0(Hyen). Under some condition on V' it
follows that

1¥g ()] < Cem!

for a.e.x € R3.
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