
2017年度　確率解析とその周辺
(Stochastic Analysis and Related Topics 2017)

予稿集
(Abstracts)

2017年 10月 16日 (月) 14:00 ～ 10月 18日 (水) 16:20

(Oct. 16 (Mon.) – Oct. 18 (Wed.), 2017)

立命館大学びわこ・くさつキャンパス（BKC)
ウエストウィング６階　談話会室

( Colloquium Room, West Wing 6F,

Biwako-Kusatsu Campus (BKC),
Ritsumeikan University)



—プログラム—

10月 16日 (月)

14:00～14:40 重川 一郎 (Ichiro Shigekawa) (京都大学)

Kolmogorov-Pearson diffusions and hypergeometric functions

14:50～15:30 星野 浄生 (Kiyoiki Hoshino) (大阪府立大学)

Identification of finite variation processes from the SFCs

15:50～16:30 廣島 文生 (Fumio Hiroshima) (九州大学)

Renormalized Gibbs measures and applications to QFT

16:40～17:20 山崎 和俊 (Kazutoshi Yamazaki) (関西大学)

Parisian reflected Lévy processes
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Kolmogorov-Pearson diffusions and hypergeometric functions

Ichiro Shigekawa (Kyoto University)

1 Introduction

We consider diffusuions generated by A = a d2

dx2 + b d
dx
. Here a is a quadratic function and

b is a linear function. We call these diffusions as Kolmogorof-Pearson diffusions. We are
interested in spectra of these generators. We want to determin all spectra completely. To
do this, hypergeometric functions play a important role.

2 Sevral expressions of generators

Our generators are of the form

A = a
d2

dx2
+ b

d

dx
(1)

where a is quadtatic and b is linear. Following Feller, we can associate a measure dm and a
function s. dm is called a speed measure and s is called a scale function. In our case, dm
has a density ρ of the form ρ = exp{

∫

(f/g)dx} where f is linear and g is quadratic. We
call this type of density as Pearson density. Pearson considered probability densities but we

may admit infinite measure cases. s defines a measure ds and it has of the form ds =
1

aρ
dx.

Using a and ρ, b can be expressed as b = a′ + a(log ρ)′.
Now we can give several expressions of the generator as follows:

generator duality differential opetaor

Kolmogorov a
d2

dx2
+ b

d

dx

Feller
d

dm

d

ds

d

dm
= −

d

ds

∗ d

ds
: L2(dm)→ L2(ds)

Stein
(

a
d

dx
+ b

) d

dx
a
d

dx
+ b = −

d

dx

∗ d

dx
: L2(ρdx)→ L2(aρdx)

Using this, we can make following correspondences.

Feller’s pair
d

dm

d

ds
←→

d

dm

d

ds

Stein’s pair (a
d

dx
+ b)

d

dx
←→

d

dx
(a

d

dx
+ b)

One important thing is that the class of Kolmogorov-Pearson diffusions are closed under
Feller’s pair and Stein’s pair. From these pairings, we can show that



• If f is an eigenfunction, then so are f ′, d
ds
f .

• If θ is an eigenfunction, then so are aθ′ + bθ, d
dm

θ.

According to the degree of a, our generators are classified as

complete family incomplete family special function
α-family a = 1 F 0

1

β-family a = x a = x2 F 1

1

γ-family a = x(1− x) a = x(1 + x) a = 1 + x2 F 2

1

Further, associated speed measures are given as follows:

complete family incomplete family

α-family eβx
2/2

β-family xαeβx xαeβ/x

γ-family xα(1− x)β xα(1 + x)β (1 + x2)α exp{2β arctanx}

3 Spectra of generators

We have the following six cases:
(i) a = 1, (ii) a = x, (iii) a = x2, (iv) a = x(1− x), (v) a = x(1 + x), (vi) a = 1 + x2.

We have discussed (i) and (ii) in the previous occasion. We will discuss here (iii) – (vi).
In the case of (iii), the generator has the following form:

A = x2
d

dx2
+ (αx− β)

d

dx
. (2)

In particular, in the case β = −1, spectra are given as

G = x2
d2

dx2
+ (αx+ 1)

d

dx
α

−5

−10

−15

−20

−25

−30

−35

−40

−45

−50

−55

−60

2 4 6 8 10 12 14 16−2−4−6−8−10−12−14−16 0

Other cases will be discussed in the talk.



Identification of finite variation processes from the
SFCs

Kiyoiki Hoshino (Osaka prefecture university)∗

1. Introduction

It has been discussed in [1]-[6] and [8] the question whether a random function (or a

stochastic derivative as an extension) is identified from its stochastic Fourier coefficients

(SFCs). In the previous studies mentioned above, affirmative answers to this question

are given. In [1] and [2], the random function is causal. In [5] and [6], the random

function is noncausal and absolutely continuous and the SFC is given by the Ogawa

integral. In this talk, we show any finite variation process (or the stochastic differential

as an extension) is identified from its SFCs of Ogawa type with respect to any CONS

of L2[0, 1]. We also show identification on infinite time interval and identification from

SFC of Skorokhod type.

2. Setting

Let (Bt)t∈[0,∞) be a Brownian motion on a probability space (Ω,F , P ). By the

symbol [0, L], we mean the finite closed interval from 0 to L if 0 < L < ∞, and [0,∞)

if L = ∞. Let (ei)i∈N be a CONS of L2[0, L]. We denote the Ogawa integral by
∫ L

0
duB,

the Sobolev space by Lr,2
i and the Skorokhod integral by

∫ L

0
dB (see Definition 1,2 and

4 of [7]).

Hereafter we consider measurable maps, what we call random functions, a, b : [0, L]×
Ω → C such that b ∈ L2[0, L] a.s.

Definition 1 (SFC-O of stochastic differential) Suppose aei is Ogawa integrable

for every i ∈ N. We define the SFC of Ogawa type (SFC-O) (duY, ei) of the stochastic

differential duYt = a(t) duBt + b(t) dt , t ∈ [0, L] with respect to (ei)i∈N by

(duY, ei) :=

∫ L

0

ei(t) duYt =

∫ L

0

a(t)ei(t) duBt +

∫ L

0

b(t)ei(t) dt.

Definition 2 (SFC-S of stochastic differential) Suppose aei ∈ L1,2
1 for every i ∈

N. We define the SFC of Skorokhod type (SFC-S) (dX, ei) of the stochastic differential

dXt = a(t) dBt + b(t) dt , t ∈ [0, L] with respect to (ei)i∈N by

(dX, ei) :=

∫ L

0

ei(t) dXt =

∫ L

0

a(t)ei(t) dBt +

∫ L

0

b(t)ei(t) dt.

3. Main Theorems

Theorem 1 (Identification from SFCs-O of stochastic differential) Assume a

is any real finite variation process. a and b are identified from the system of SFCs-O

((duY, ei))i∈N of the stochastic differential duYt = a(t) duBt + b(t) dt.

∗ e-mail: su301032@edu.osakafu-u.ac.jp



Remark 1 If a ≥ 0 λ⊗P -a.e. , then a is identified in the strong sense , i.e. identified

from only SFCs without supplementary information such as (Bt)t∈[0,L].

Remark 2 a is identified as a member of L0([0, L]×Ω), but if a is assumed to be left

continuous, a is specified for every t ∈ [0, L] almost surely.

Remark 3 Even if the system of SFCs lacks its finite elements (duY, ei), a can be

identified.

Proposition 1 (Ogawa integral of H-S integral transform of Wiener functional)

Let f ∈ L1,2
1 and K ∈ L2([0, L]2). Then, F (t) =

∫ L

0
K(t, s)f(s) ds is u-integrable and

the Ogawa integral is given by∫ L

0

F (t) duBt =

∫ L

0

F (t) dBt +

∫ L

0

∫ L

0

K(t, s)Dtf(s) ds dt in L2(Ω).

Theorem 2 (Identification from SFCs-S of stochastic differential) Assume a sat-

isfies the following:

(1) a(t) is real local absolutely continuous a.s.

(2) a′(t) ∈ L1,2
1 , a(0) ∈ L1,2

0 .

(3) a′(t) ∈ L1[0, L] a.s. ,
∫ t

0
Dta

′(s) ds ∈ L2[0, L] a.s.

Then, a and b are identified from the system of SFCs-S ((dX, ei))i∈N of the stochastic

differential dXt = a(t) dBt + b(t) dt.

Remark 1 If a ≥ 0 λ⊗ P -a.e. , then a is identified in the strong sense.

Remark 2 a is specified for every t ∈ [0, L] almost surely.

Remark 3 Even if the system of SFCs lacks its finite elements (dX, ei), a can be

identified.

Remark 4 If L < ∞, then (3) holds.
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Renormalized Gibbs measures and applications to QFT

Fumio Hiroshima

This is a joint work with Oliver Matte in Aalborg university [5]. The Nelson Hamilto-
nian with UV(ultraviolet) cutoff parameter ε > 0 is given by

Hε = Hp ⊗ 1l + 1l⊗Hf + gϕ(ϱε(· − x)).

Here Hp = −1
2∆+V (x) is a Schrödinger operator. The operator Hf = dΓ(ω(−i∇)) is the

free field Hamiltonian and ϕ(ϱε(· −x)) is a Gaussian random variable with cutoff function
given by

ϱ̂ε(k) =
e−ε|k|2/2√

ω(k)
1l|k|>λ ∈ L2(R3) ε > 0.

E. Nelson [7] introduces the renormalization term:

Eε = −1

2

∫
|k|>λ

|ϱ̂ε(k)|2

ω(k) + |k|2/2
dk.

Here we noice that Eε → −∞ as ε ↓ 0. It is shown in [8, 7, 1] that there exists a self-adjoint
operator Hren such that

lim
ε↓0

e−T (Hε−g2Eε) = e−THren .

The important fact is that we can not see the explicit form of Hren, it is however shown
in [3] that Hren has the ground state, and it is unique by [6]. Let Ψg be the ground state
of Hren. Let 0 ≤ ϕ ∈ L2(R3) and since (ϕ⊗ 1l,Ψg) ̸= 0, we have

(Ψg, OΨg) = lim
T→∞

lim
ε↓0

(e−THεϕ⊗ 1l, Oe−THεϕ⊗ 1l)

∥e−THεϕ⊗ 1l∥2

for any bounded operators O. On the Wiener space (Ω,F ,W ) the finite volume Gibbs
measure is defined by

µT (A) =
1

ZT

∫
R3

dxEx
W

[
1lAϕ(B−T )ϕ(BT )e

g2

2
Sren

]
for A ∈ F , where (Bt)t∈R is BM on the whole line. For some O it follows that (Ψg, OΨg) =
lim
T→∞

EµT [OT ] with some integrant OT . Let F[−S,S] = σ(Br, r ∈ [−S, S]) and we set

G = σ(∪S≥0F[−S,S]).

Theorem 0.1 [4, 2, 5] There exists a probability measure µ∞ on (Ω,G) such that µT →
µ∞ as T → ∞ in the local weak sense. I.e., µT (A) → µ∞(A) for A ∈ F[−S,S] for arbitrary
S.
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We show several applications in terms of infinite volume Gibbs measure µ∞ in [5].
(1.Super exponential decay of the number of bosons) Let NΛ be the truncated

number operator. Then

(Ψg, e
+βNΛΨg) = Eµ∞ [e−(1−e+β)

∫ 0
−∞ ds

∫∞
0 dtWΛ ] < ∞

for all β ≥ 0.
(2. Gaussian decay) It follows that

(Ψg, e
+βϕ(f)2Ψg) =

1√
1− β∥f∥2/2

Eµ∞

[
e
+

βS2
∞

2(1−β∥f∥2/2)

]
.

In particular (Ψg, e
βϕ(f)2Ψg) < ∞ for β < 1/(2∥f∥2) and lim

β↑1/(2∥f∥2)
(Ψg, e

βϕ(f)2Ψg) = ∞.

(3. Spatial decay) We have by [6]

Ψg = e−T (Hren−E)Ψg = eTEe−
∫ T
0 V (Bs+x)dse

g2

2
Srenea

∗(UT )e−THfea(ŪT )Ψg(Bt + x).

Here UT = − g√
2

∫ T
0

e−|s|ω(k)√
ω(k)

e−ikBsds and E = inf σ(Hren). Under some condition on V it

follows that
∥Ψg(x)∥ ≤ Ce−c|x|

for a.e.x ∈ R3.
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Parisian reflected Lévy processes

Florin AVRAM (University of Pau)
José-Luis PÉREZ (CIMAT)
Kazutoshi YAMAZAKI (Kansai University)∗1

1. Parisian-reflected Lévy processes
Let X = (X(t); t ≥ 0) be a spectrally negative Lévy process defined on a probability space
(Ω,F ,P) with its Laplace exponent ψ(θ) : [0,∞) → R, i.e. E

[
eθX(t)

]
=: eψ(θ)t, t, θ ≥ 0,

given by the Lévy-Khintchine formula

ψ(θ) := γθ +
σ2

2
θ2 +

∫
(−∞,0)

(
eθx − 1− θx1{x>−1}

)
Π(dx), θ ≥ 0,

where γ ∈ R, σ ≥ 0, and Π is a measure on (−∞, 0) known as the Lévy measure of X that
satisfies

∫
(−∞,0)(1 ∧ x

2)Π(dx) < ∞. In addition, let Tr = {T (i); i ∈ N} be an increasing
sequence of epochs of a Poisson process with rate r > 0, independent of X .

We construct the Lévy process with Parisian reflection below Xr = (Xr(t); t ≥ 0) as
follows: the process is only observed at times Tr and is pushed up to 0 if and only if it is
below 0. More precisely, we have

Xr(t) = X(t), 0 ≤ t < T−0 (1) (1)

where

T−0 (1) := inf{S ∈ Tr : X(S−) < 0}. (2)

The process is then pushed upward by |X(T−0 (1))| so thatXr(T
−
0 (1)) = 0. For T−0 (1) ≤ t <

T−0 (2) := inf{S ∈ Tr : S > T−0 (1), Xr(S−) < 0}, we have Xr(t) = X(t) + |X(T−0 (1))|.
The process can be constructed by repeating this procedure.

Suppose Rr(t) is the cumulative amount of (Parisian) reflection until time t ≥ 0. Then
we have

Xr(t) = X(t) +Rr(t), t ≥ 0,

with

Rr(t) :=
∞∑
i=1

1{T−
0 (i)≤t}|Xr(T

−
0 (i)−)|, t ≥ 0, (3)

where (T−0 (n);n ≥ 1) can be constructed inductively by (2) and

T−0 (n+ 1) := inf{S ∈ Tr : S > T−0 (n), Xr(S−) < 0}, n ≥ 1.

This work was supported by MEXT KAKENHI Grant Number 26800092.
2010 Mathematics Subject Classification: 60G51, 91B30.
Keywords: Lévy processes, flucutaiton theory, scale functions.
∗1 e-mail: kyamazak@kansai-u.ac.jp

web: https://sites.google.com/site/kyamazak/



2. Fluctuation identities
Define

τ−a (r) := inf {t > 0 : Xr(t) < a} and τ+a (r) := inf {t > 0 : Xr(t) > a} , a ∈ R.

We obtain several fluctuation identities including the following:

1. Joint Laplace transform with killing: for all q, θ ≥ 0, a < 0 < b, and x ≤ b,

g(x, a, b, θ) := Ex
(
e−qτ

+
b (r)−θRr(τ

+
b (r)); τ+b (r) < τ−a (r)

)
,

h(x, a, b, θ) := Ex
(
e−qτ

−
a (r)−θRr(τ

−
a (r)); τ−a (r) < τ+b (r)

)
.

2. Total discounted values of Parisian reflection: for a < 0 < b, q ≥ 0, and x ≤ b,

f(x, a, b) := Ex

(∫ τ+b (r)∧τ−a (r)

0

e−qtdRr(t)

)
.

These can be written in terms of the scale function of the spectrally negative Lévy process.
In the talk, several extensions/modifications of this process are also discussed, includ-

ing the cases with additional classical reflection from above/below and also the cases X is
replaced with a spectrally positive Lévy process.

3. Applications in Insurance
In de Finett’s optimal dividend problem, one wants to choose the optimal dividend policy so
as to maximize the total expected value of discounted dividends accumulated until ruin.

Consider its version where dividend payments can be made only at the jump times of
an independent Poisson process, a Parisian reflection strategy is expected to be optimal.
Namely, given a suitable barrier b∗, it is optimal to pay dividends at each dividend payment
decision time if and only if the surplus is above b∗ – the resulting surplus process becomes
a Parisian-reflected process. The optimality is shown in [2] for the spectrally negative case
with a completely monotone Lévy density, and in [4] for the spectrally positive case.
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A RELATION BETWEEN MODELED DISTRIBUTIONS

AND PARACONTROLLED DISTRIBUTIONS

MASATO HOSHINO (WASEDA UNIVERSITY)

In the field of singular SPDEs, there are two big theories: the theory of
regularity structures [4] by Hairer and the paracontrolled calculus [2] by Gu-
binelli, Imkeller and Perkowski. These two theories are based on a common
principle but composed of different mathematical tools. Therefore we can
use either of them according to the situation. For example, the former is
useful to show a universal property of a large number of SPDEs (e.g. [5, 6]),
and the latter is useful to get more detailed information of a specific SPDE
(e.g. [3, 7]). However, there is a gap between the two theories about the
range of application. For example, the Hairer’s theory can be applied to the
3-dimensional parabolic Anderson model

(∂t −∆)u(t, x) = u(t, x)ξ(x), t > 0, x ∈ T3,

for ξ ∈ C−3/2−ϵ(T3) with ϵ > 0, but the GIP theory cannot be.
In this talk, we discuss how to overcome this gap. Recently, Bailleul and

Bernicot [1] are tying to improve the GIP theory. Our plan is to complete
their work by combining the essence of the Hairer’s theory. There is a differ-
ence between both theories about the definition of solutions. In the Hairer’s
theory, the solution is defined as a modeled distribution, which represents a
local behavior of the solution. In the GIP theory, the solution is defined as
a paracontrolled distribution, which is defined by nonlocal operators. Each
definition has an advantage to each other. We compare these two notions
and aim to find a better way.
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The invariant measure and the flow associated to

the Φ4
3-quantum field model

Seiichiro Kusuoka
（Research Institute for Interdisciplinary Science, Okayama University）

We consider the invariant measure and flow for the stochastic quantization equa-
tion associated to the Φ4

3-model on the torus, which appears in quantum field the-
ory. By virtue of Hairer’s breakthrough, such nonlinear stochastic partial differential
equations became solvable and are intensively studied now. In this talk, we present a
direct construction to both a global solution and invariant measure for this equation.

Letm0 > 0, Λ be the 3-dimensional torus i.e. Λ = (R/Z)3, and µ0 be the centered
Gaussian measure on the space of Schwartz distributions S ′(Λ) with the covariance
operator [2(−△+m2

0)]
−1. We remark that µ0 is different from the Nelson’s Euclidean

free field measure by the scaling
√
2. In order to adjust our setting to those of known

results, we define µ0 as above. In the constructive quantum field theory, there was
a problem to construct a measure

µ(dϕ) = Z−1 exp (−U(ϕ))µ0(dϕ)

where

U(ϕ) =

∫
Λ

(
1

4
ϕ(x)4 − Cϕ(x)2

)
dx

and Z is the normalizing constant. Since the support of µ0 is in the space of tempered
distributions, ϕ4 and ϕ2 are not defined in usual sense. So, we approximate ϕ and
take the limit.

Let ⟨f, g⟩ be the inner product on L2(Λ;C). For k ∈ Zd, define ek(x) := e2πik·x

where k · x := k1x1 + k2x2 + k3x3. For N ∈ N, denote {j ∈ Z; |j| ≤ N} by ZN , and
let PN be the mapping from S ′(Λ) to L2(Λ;C) given by

PNϕ :=
∑
k∈Z3

N

⟨ϕ, ek⟩ek.

Define a function UN on S ′(Λ) by

UN(ϕ) =

∫
Λ

{
1

4
(PNϕ)(x)

4 − 3

2

(
C

(N)
1 − 3C

(N)
2

)
(PNϕ)(x)

2

}
dx

where

C
(N)
1 =

1

2

∑
k∈Z3

N

1

k2 +m2
0

, C
(N)
2 =

1

2

∑
l1,l2∈Z3

N

1

(l21 +m2
0)(l

2
2 +m2

0)(l
2
1 + l22 + (l1 + l2)2 + 3m2

0)
.

We remark that limN→∞ C
(N)
1 = limN→∞ C

(N)
2 = ∞, and C

(N)
1 and C

(N)
2 are called

renormalization constants. Consider the probability measure µN on S ′(Λ) given by

µN(dϕ) = Z−1
N exp (−UN(ϕ))µ0(dϕ)



where ZN is the normalizing constant. We remark that {µN} is the approximation
sequence of the Φ4

3-measure which will be constructed below as the invariant measure
of the associated flow.

Now we consider the stochastic quantization equation associated to {µN} as
follows.

dX̃N
t (x) = dWt(x)− (−△+m2

0)X̃
N
t (x)dt

−
{
PN [(PNX̃

N
t )3](x)− 3

(
C

(N)
1 − 3C

(N)
2

)
PNX̃

N
t (x)

}
dt

X̃N
0 (x) = ξN(x)

where Wt(x) is a white noise with parameter (t, x) ∈ [0,∞) × Λ and ξN(x) is a
random variable which has µN as the law, and independent of Wt. We remark that
µN is the invariant measure with respect to the semigroup generated by the solution
to the equation. Let XN := PNX̃

N for N ∈ N. Then, XN satisfies the stochastic
partial differential equation

dXN
t (x) = PNdWt(x)− (−△+m2

0)X
N
t (x)dt

−
{
PN [(X

N
t )3](x)− 3(C

(N)
1 − 3C

(N)
2 )XN

t (x)
}
dt

XN
0 (x) = PNξN(x)

(1)

To apply the Hairer’s reconstruction method, which enables us to transform (1)
for a solvable partial differential equation, we supplementary introduce the infinite-
dimensional Ornstein-Uhlembeck process Z as follows. Let Z be the solution to the
stochastic partial differential equation on Λ{

dZt(x) = dWt(x)− (−△+m2
0)Zt(x)dt, (t, x) ∈ [0,∞)× Λ

Z0(x) = ζ(x), x ∈ Λ

where ζ is a random variable which has µ0 as its law and is independent of Wt and
ξN . Let X

N,(2)
t := XN

t −Z(1,N)
t + Z(0,3,N)

t for t ∈ [0,∞) where

Z(0,3,N)
t :=

∫ t

0

e(t−s)(△−m2
0)
(
PN(PNZs)

3 − 3CN
1 PNZs

)
ds, t ∈ [0,∞),

and decompose XN,(2) into XN,(2),< and XN,(2),⩾ by means of paraproduct. Then,
we have a solvable, coupled, semilinear and dissipative parabolic partial differential
equation, which the pair (XN,(2),<, XN,(2),⩾) satisfies. By applying the technique
of the semilinear and dissipative parabolic equation, we obtain some estimates for
XN,(2),< and XN,(2),⩾, which yields the tightness of XN,(2). As the result we obtain
the following theorem for the Φ4

3-measure and the associated flow.

Theorem 1. For ε ∈ (0, 1] sufficiently small, {XN} is tight on C([0,∞);B
−1/2−ε
4/3 ),

where Bs
p,r is the Besov space. Moreover, if X is a limit of a subsequence {XN(k)}

of {XN} on C([0,∞);B
−1/2−ε
4/3 ), then X is a continuous Markov process on B

−1/2−ε
4/3 ,

the limit measure µ of the associated subsequence {µN(k)} is an invariant measure
with respect to X and it holds that∫

∥ϕ∥4
B

−1/2−ε
4

µ(dϕ) < ∞.



Operads and Stochastic Calculus

Roland Friedrich

University of Saarbrücken, Faculty of Mathematics, D-66123 Saarbruecken,
Germany.

In this talk we shall discuss the operadic nature of Itô and Stratonovich
calculus. More precisely, we shall be concerned with the space of continuous
semimartingales and we will relate it to two fundamental operads which
have their roots in algebraic topology. Further, we will explain how the two
are related from a cohomological perspective. Finally, we shall present an
algebraic-geometric description of the Girsanov transformation.



Supersymmetry in Wiener Space

Jiro Akahori

Department of Mathematical Sciences, Ritsumeikan University.

I will discuss a probabilistic representation of Sato’s grassmanian using
stochastic area, which is based on a Fermionic ”path-integral”(work by H.
Aihara). I will also comment on its links to some other representations and
the index theorem.



A FUNCTIONAL CENTRAL LIMIT THEOREM FOR NON-SYMMETRIC

RANDOM WALKS ON STEP-r NILPOTENT COVERING GRAPHS

Ryuya Namba (Okayama University) (email: rnamba@s.okayama-u.ac.jp)

(Joint work with S. Ishiwata (Yamagata University) and H. Kawabi (Okayama University))

A locally finite, connected and oriented graph X = (V,E) is called a Γ-nilpotent covering graph if

X is a covering graph of a finite graph X0 = (V0, E0) with a covering transformation group Γ which is

a torsion free, finitely generated and nilpotent group of step r (r ≥ 2). Here V is a set of all vertices

and E is a set of all oriented edges in X. For e ∈ E, the origin, the terminus and the inverse edge of

e are denoted by o(e), t(e) and e, respectively. Ex := {e ∈ E | o(e) = x} denotes the set of all edges

whose origin is x ∈ V .

As is known, nilpotent covering graphs can be regarded as an extension of crystal lattices or groups

of polynomial growth and the long time asymptotics for random walks (RWs) on them has been studied

by several authors intensively and extensively (for instance, see [4, 1, 2]). We established a functional

central limit theorem (FCLT; the Donsker–type invariance principle) for non-symmetric RWs on Γ-

nilpotent covering graphs from a viewpoint of discrete geometric analysis developed by Sunada [5]

under the assumption that Γ is free of step two (see [3]). However, we can completely relax the

assumption and obtain an improved result on the FCLT. In this talk, we revisit this problem as a

continuation of [3].

Let us consider a Γ-nilpotent covering graph X = (V,E). We introduce a 1-step positive transition

probability p : E −→ (0, 1] which is invariant under Γ-actions. Then the transition probability

p induces a RW {wn}∞n=0 with values in X. We may also consider the RW {π(wn)}∞n=0 on the

quotient graph X0 = (V0, E0) by the Γ-invariance of p. Here π : X −→ X0 is a covering map. Let

m : V0 −→ (0, 1] be a normalized invariant measure on X0 and we also write m : V −→ (0, 1] for

the Γ-invariant lift of m to X. Let H1(X0,R) and H1(X0,R) be the first homology group and the

first cohomology group of X0, respectively. In order to measure the homological drift of the RW, we

define the homological direction of the RW on X0 by γp :=
∑

e∈E0
p(e)m

(
o(e)

)
e ∈ H1(X0,R). We

call the RW on X0 (m-)symmetric if p(e)m
(
o(e)

)
= p(e)

(
t(e)

)
(e ∈ E0). It is clear that the RW is

(m-)symmetric if and only if γp = 0.

By the celebrated theorem of Malćev, we find a connected and simply connected nilpotent Lie group

G of step r such that Γ is isomorphic to the cocompact lattice in G. By virtue of the general theory

of Lie algebras, its Lie algebra g may have the direct sum decomposition g = g(1) ⊕ g(2) ⊕ · · · ⊕ g(r)

satisfying [g(i), g(j)] ⊂ g(i+j)(i + j ≤ r) and g(i+1) = [g(1), g(i)] (i = 1, . . . , r − 1). Now we take a

canonical surjective linear map ρR : H1(X0,R) −→ g(1) through the covering map π. By the discrete

analogue of Hodge–Kodaira theorem (cf. [4]), an inner product

⟨⟨ω, η⟩⟩p :=
∑
e∈E0

p(e)m
(
o(e)

)
ω(e)η(e)− ⟨ω, γp⟩⟨η, γp⟩

(
ω, η ∈ H1(X0,R)

)
associated with the transition probability p is induced from the space of (modified) harmonic 1-forms

on X0 to H1(X0,R). Using the canonical map ρR, we construct a flat metric g0 called the Albanese

metric on g(1) from the inner product ⟨⟨·, ·⟩⟩p.
1



We consider a Γ-periodic realization Φ0 : X −→ G. In what follows, we take a reference point

x∗ ∈ V such that Φ0(x∗) = 1G. We call Φ0 : X −→ G modified harmonic if∑
e∈Ex

p(e)log
(
Φ0

(
o(e)

)−1 · Φ0

(
t(e)

))∣∣∣
g(1)

= ρR(γp) (x ∈ V ).

We note that such Φ0 is uniquely determined, however, the modified harmonic realization has the ambi-

guity in the components corresponding to g(2)⊕· · ·⊕g(r). More precisely, log
(
Φ0(x)

)∣∣
g(2)⊕···⊕g(r)

(x ∈ V )

is not be determined uniquely. The quantity ρR(γp) is called the asymptotic direction. We note that

γp = 0 implies ρR(γp) = 0g, however, the converse does not hold in general.

We introduce the family of dilation operators {τε}ε≥0 acting on G. Let dCC denote the Carnot–

Carathéodory metric on G. Note that (G, dCC) is not only a metric space but a geodesic space.

Let Dn = {k/n : k = 0, 1, . . . , n} be a (1/n-)partition of the time interval [0, 1] and set Y(n)
k/n =

τn−1/2Φ0(wk) (n ∈ N, k = 0, 1, . . . , n). Let (Y(n)
t )0≤t≤1 be the G-valued continuous stochastic process

given by the dCC-geodesic interpolation of {Y(n)
k/n}

n
k=0. We write

H1
1G

([0, 1], G) = {h : [0, 1] → G |h : absolutely continuous, h0 = 1G and ∥ḣ∥L2 < ∞}

for the usual Cameron–Martin subspace of the path space, where we are convinced ḣ(t) belongs to the

evaluation g
(1)
h(t) and ∥ḣ∥L2 :=

∫ 1
0 ∥ḣ(t)∥g(1) dt. We denote by ∥ · ∥α-Höl the α-Hölder norm with respect

to dCC. For every small parameter ε > 0, we set

W1/2−ε
1G

([0, 1], G) = H1
1G

([0, 1], G)
∥·∥(1/2−ε)-Höl

.

Let (Yt)0≤t≤1 be the G-valued diffusion process which solves the SDE

dYt =

d∑
i=1

Vi(Yt) ◦ dBi
t + β(Φ0)(Yt) dt, Y0 = 1G,

where {V1, . . . , Vd} be an orthonormal basis of (g(1), g0), the drift coefficient β(Φ0) ∈ g(2) is defined by

β(Φ0) :=
∑
e∈E0

p(e)m
(
o(e)

)
log

(
Φ0

(
o(e)

)−1 · Φ0

(
t(e)

))∣∣∣
g(2)

,

and (Bt)0≤t≤1 = (B1
t , . . . , B

d
t )0≤t≤1 is an Rd-valued standard BM.

Then the refinement of the FCLT obtained in [3] is now stated as follows:

Theorem. (1) Let Φ0, Φ̃0 be two modified harmonic realizations. Then β(Φ0) = β(Φ̃0) holds.

(2) Under the assumption that ρR(γp) = 0g, we have, for every ε > 0,

(Y(n)
t )0≤t≤1 =⇒ (Yt)0≤t≤1 in W1/2−ε

1G
([0, 1];G) as n → ∞.
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Free fields and extended Dirichlet spaces

Masatoshi Fukushima

Free fields for Euclidean domains are used to be understood by mathe-
matical physicists as Gaussian random distributions related to the Sobolev
spaces of order１．In 1985, M.Roeckner introduced and studied the Gaussian
fields indexted by the general transient extended Dirichlet spaces and those
indexed by the signed measures of finite 0-order energy as well. We intend
to generalize them to recurrent cases. This talk concerns the Gaussian fields
indexed by signed measures of finite logarithmic energy and their relations
to Liouville random measures.



Characterization of the explosion time

for the Komatu–Loewner evolution

Takuya Murayama (Kyoto University)

1 Introduction

The Komatu–Loewner equation (K–L equation for short) is a correspondence to the Loewner equation
in multiply connected domains. Bauer and Friedrich [1] established its concrete expression in standard
slit domains of the upper half plane H, and then, Chen, Fukushima et al. [2], [3], [4] investigated some
properties of the Komatu–Loewner evolution generated by it.

In this talk, I will give a behavior of the image domain at the exlplosion time of this evolution, which is
a refinement of a part of the study in [1]. The proof is based on a probabilistic expression of the solution
that was developed in [2], [3] and [4], together with a general theory of complex analysis.

2 Notation and main results

We fix N ∈ N. Let Cj ⊂ H, 1 ≤ j ≤ N , be slits parallel to the real axis and K :=
∪N

j=1 Cj . We call a
domain of the form H \K a standard slit domain. The left and right end points of the slit Cj are denoted
by zj = xj + iyj and zrj = xr

j + iyj respectively. The slits {Cj ; 1 ≤ j ≤ N} are identified with a vector

s = (y1, . . . , yN , x1, . . . , xN , xr
1, . . . , x

r
N ) ∈ R3N . We define the set S of all such “slit vectors” in R3N as

S := {s = (y1, . . . , yN , x1, . . . , xN , xr
1, . . . , x

r
N ); yj > 0, and xj < xr

k or xk < xr
j if yj = yk (j ̸= k)}.

The slits and standard slit domain determined by s ∈ S are denoted by Cj(s), 1 ≤ j ≤ N , and D(s),
respectively.

Take a standard slit domain D = D(s) and a simple curve γ : [0, tγ) → D satisfying γ(0) ∈ ∂H and
γ(0, tγ) ⊂ D. For each t ∈ [0, tγ), there is a unique conformal map gt from D onto another standard slit
domain Dt = D(s(t)) with the hydrodynamic normalization

gt(z) = z +
at
z

+ o(z−1), z → ∞,

for some at ≥ 0. The image ξ(t) := gt(γ(t))(= limz→γ(t) gt(z)) ∈ ∂H of the terminal point γ(t) is called
the driving function of gt. The quantity at, called the half plane capacity of the set γ[0, t] relative to gt, is
strictly increasing and continuous in t. Thus we can reparametrize the curve γ in such a way that at = 2t.
Under these settings, gt(z) satisfies the following K–L equation:

d

dt
gt(z) = −2πΨs(t)(gt(z), ξ(t)), g0(z) = z ∈ D. (1)

The function Ψs(·, w) = ΨD(·, w), w ∈ ∂H, is the conformal map from D onto some standard slit domain
with w mapped to ∞, ∞ to 0 and ΨD(z, w) ∼ −π−1(z − w)−1 as z → w.

Since ΨH(z, w) = −π−1(z − w)−1, the celebrated Loewner equation

d

dt
gt(z) =

2

gt(z)− ξ(t)
, g0(z) = z ∈ H,

corresponds to the K–L equation in D = H.
The end points zj(t) = xj(t) + iyj(t) and zrj (t) = xr

j(t) + iyj(t) of the slits Cj,t = Cj(s(t)) also satisfy
the K–L equation for slits:

d

dt
yj(t) = −2πℑΨs(t)(zj(t), ξ(t)),

d

dt
xj(t) = −2πℜΨs(t)(zj(t), ξ(t)),

d

dt
xr
j(t) = −2πℜΨs(t)(z

r
j (t), ξ(t)).

(2)

1



We now follow this procedure in the opposite direction. Namely, for a given driving function ξ ∈
C([0,∞);R), we first solve the K–L equation (2) for slits s(t) and then solve (1) for gt(z), z ∈ D. We
denote by tξ the explosion time for the ODEs (2) and put Ft := {z ∈ D; tz ≤ t}, t < tξ, where

tz = tξ ∧ sup{t > 0; |gt(z)− ξ(t)| > 0}, z ∈ D,

is the explosion time of gt(z). It is possible to check that gt, t ∈ [0, tξ), is a unique conformal map from
D \ Ft onto Dt = D(s(t)) satisfying the hydrodynamic normalization with at = 2t. The bounded set Ft

is not necessarily a curve but a (compact) H-hull in the sense that Ft = H ∩ Ft and that H \ Ft is simply
connected. We call both gt and Ft the Komatu–Loewner evolution driven by ξ(t).

It is a natural problem what happens if tξ is finite. A reasonable guess is that the evolution Ft should
hit the slits

∪
j Cj at the time tξ. In terms of the slits Cj,t = Cj(s(t)) of Dt, this means that Cj,t is absorbed

into the real axis for some j as claimed in [1, Theorem 4.1]. Justifying this description is, however, not
trivial because the solution to (2) belongs to the space of slits S, not R3N , and the slits Cj,t may degenerate
to one point or collide with each other before reaching ∂H.

Our main theorem justifies the above description in the following manner:

Theorem 1. Let R(w, s) := min1≤j≤N dist(Cj(s), w) for w ∈ ∂H and s ∈ S. If tξ < ∞, then it holds that
limt↗tξ R(ξ(t), s(t)) = 0.

For the proof, it suffices to extend the solution s(t) beyond tξ if the conclusion does not hold. To this
end, we interpret the complicated evolution gt and Ft inD as a simpler one g0t and Ft inH by “forgetting the
slits,” the technique employed in [4]. g0t and Ft extend to a Loewner evolution in H over the time interval
[0, tξ]. Then, by a version of Carathéodory’s kernel theorem (cf. [5, Theorem 15.4.7]), {gt ◦ (g0t )−1; t < tξ}
extends to a family of conformal maps over [0, tξ]. This implies that the limit s(tξ) = limt↗tξ s(t) still
represents N slits in H, which is a contradiction.

If time permits, I will provide an example where the explosion time for the stochastic Komatu–Loewner
evolution (SKLE) is finite with probability one. We define the domain constant k as

k(w, s) := 2π lim
z→w

(
Ψs(z, w) +

1

π

1

z − w

)
, w ∈ ∂H, s ∈ S.

SKLE√
6,k is a K–L evolution driven by the random function ξ determined by the system of SDEs (2) and

dξ(t) = −k(ξ(t), s(t))dt+
√
6dBt (3)

where Bt is a one-dimensional standard Brownian motion. Then we have the following:

Proposition 2. Let ζ be the explosion time for the SDEs (2) and (3). It holds that ζ < ∞ almost surely.

This is proven by interpreting SLE6 as SKLE√
6,k, i.e., “recalling the slits,” which is an idea in the

opposite direction to the proof of Theorem 1.
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Distributional Itô’s Formula and
Regularization of Generalized Wiener

Functionals

Takafumi Amaba♭1 and Yoshihiro Ryu2
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Let X = (Xt)t⩾0 be a diffusion process defined as a solution to d-
dimensional stochastic differential equation

dXt = σ(Xt)dw(t) + b(Xt)dt, X0 = x ∈ Rd,

where w = (w1(t), · · · , wd(t))t⩾0 is a d-dimensional Wiener process with
w(0) = 0. The main conditions on σ = (σi

j)1⩽i,j⩽d and b = (bi)1⩽i⩽d

under which we will work are combinations from the following.

(H1) the coefficients σ and b are C∞, and have bounded derivatives
in all orders ⩾ 1.

(H2) (σσ∗)(x) is strictly positive, where x = X0 and σ∗ is the trans-
posed matrix of σ.

(H3) There exists λ > 0 such that

λ|ξ|2Rd ⩽ ⟨ξ, (σσ∗)(x)ξ⟩Rd for all ξ ∈ Rd,

where ⟨•, •⟩Rd is the standard inner product on Rd, and | • |Rd = | • | is
the corresponding norm.

(H4) There exists κ > 0 such that

⟨ξ, (σσ∗)(x)ξ⟩Rd ⩽ κ|ξ|2Rd for all ξ ∈ Rd.

In the case of d = 1, many researchers in stochastic analysis would

know, at least intuitively, the symbol “
∫ T

0
δy(Xt)dt” stands for a quan-

tity relating to the local time of X at y (evaluated at time T ) which is
a random variable at each time T , even though not for δy(Xt). There-
fore, one expects naturally that the integration with respect to time
gives rise to something like a ‘smoothing effect’.

One way to formulate this phenomenon might be to employ notions
in Malliavin calculus. For a distribution Λ on Rd, if Λ(Xt) ∈ Ds

p

(where Ds
p stands for the Sobolev space of integrability-index p and

differentiability-index s ∈ R with respect to the Malliavin derivative),

we define
∫ T

0
Λ(Xt)dt the Bochner integral of the mapping (0, T ] ∋

t 7→ Λ(Xt) ∈ Ds
p. Here, one needs to address the Bochner integrability.

♭This work was supported by JSPS KAKENHI Grant Number 15K17562.
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2

To include local times for one-dimensional diffusions in our scope, we
prepare the following

Proposition 1. Assume d = 1, (H1) and (H2). Let Λ ∈ S ′(R) be

positive. Then for every p ∈ (1,∞), we have
∫ T

0
∥Λ(Xt)∥p,−2dt < +∞.

Hence the mapping (0, T ] ∋ t 7→ δy(Xt) ∈ D−2
p is Bochner integrable

in the case of d = 1. For multi-dimensional cases, it is sufficient to
assume x ̸= y in order to guarantee the Bochner integrability.

Let Hs
p(Rd) := (1 − △)−s/2Lp(Rd, dx), p ∈ (1,∞), s ∈ R be the

Bessel potential spaces. The main result in this talk is the following.

Theorem 2. Assume (H1), (H3) and (H4). Let p ∈ (1,∞) and s ∈ R.
Then for each Λ ∈ Hs

p(Rd), we have

(i) Λ(Xt) ∈ Ds
p′ for t > 0 and p′ ∈ (1, p);

(ii) if p > 2, we further have
∫ T

t0
Λ(Xt)dt ∈ Ds+1

p′ for t0 ∈ (0, T ] and

p′ ∈ [2, p).

Hence in this sense, we exhibited the ‘smoothing effect’ of the Bochner
integral.

This will be shown by generalizing the classical Itô’s formula to our
distributional setting. For this, one needs to define the stochastic inte-
grals where the integrand is a family of generalized Wiener functionals.
We define this object as (a generalization of) Skorokhod integrals.

Now the key to prove Theorem 2 is to use the elliptic regularity the-
orem and to track the differentiability-index of the stochastic integrals
according to that of the integrand:

Theorem 3. Assume (H1) and (H2). Let s ∈ R, p ⩾ 2 and Λ ∈
Hs

p(Rd). Then we have∫ T

0

Λ(Xt)dw
i(t) ∈ Ds

p, for i = 1, · · · , d

provided either one of the following

(i) limt↓0 ∥Λ(Xt)∥p,s = 0.

(ii) s ⩾ 0 and
∫ T

0
∥Λ(Xt)∥2p,sdt < ∞.
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Multiray generalization of the arcsine laws for
occupation times of infinite ergodic transformations

Toru Sera (Kyoto University) and Kouji Yano (Kyoto University)

1 Introduction

In this talk, we consider a certain distributional convergence of occupation time ratios for
ergodic transformations preserving an infinite measure. We give a general limit theorem
which can be regarded as a multiray extension of the 2-ray result by Thaler–Zweimüler [4].
Our general limit theorem can be applied to the following problems:

1. (Lamperti’s process [2]) Let Z = (Zk)k≥0 be an irreducible and null-recurrent discrete-

time Markov chain on a countable discrete state space {0}+
∑d

i=1 Ai, whereA1, . . . , Ad

will be called the rays, having the following property: Z cannot skip the origin 0 when
it changes rays, i.e., the condition Zn ∈ Ai and Zm ∈ Aj for some n < m and i ̸= j
implies the existence of n < k < m for which Zk = 0. Then, as n → ∞,

1

n

( n−1∑
k=0

1A1(Zk), . . . ,
n−1∑
k=0

1Ad
(Zk)

)
→ ?

2. (interval map with indifferent fixed points [3]) Let [0, 1] be decomposed into [0, 1] =∑d
i=1 Ii for disjoint intervals I1, . . . , Id, and suppose that the map T : [0, 1] → [0, 1]

satisfies the following conditions: for each i,

(a) T |Ii belongs to C2(Ii) and has a C2-extension over Ii, and T (Ii) = [0, 1],

(b) there exists xi ∈ Ii such that

Txi = xi, T ′xi = 1, and

(x− xi)T
′′x > 0 for any x ∈ Ii \ {xi}.

In particular, T ′ > 1 on Ii \ {xi}.

Let Ai’s be disjoint small neighborhoods of xi’s, respectively, and take Y := [0, 1] \∑d
i=1Ai. We will call A1, . . . , Ad the rays and Y the origin set. Note that we can

take the rays sufficiently small so that the orbit (T kx)k≥0 cannot skip the origin set
when it changes rays. In this setting, we know that n−1

∑n−1
k=0 1

∑d
i=1 Ai

(T kx) → 1,
a.e., as n → ∞. Then, as n → ∞,

1

n

( n−1∑
k=0

1A1(T
kx), . . . ,

n−1∑
k=0

1Ad
(T kx)

)
→ ?

2 Main results

Let (X,A, µ) be a standard measurable space with a σ-finite measure such that µ(X) =
∞, and let T : (X,A, µ) → (X,A, µ) be a conservative, ergodic, measure preserving
transformation (which is abbreviated by CEMPT ). Assume that X is decomposed into



X = Y +
∑d

i=1Ai for Y ∈ A with µ(Y ) ∈ (0,∞) and Ai ∈ A with µ(Ai) = ∞ such that
the orbit (T kx)k≥0 cannot skip the origin set Y when it changes rays A1, . . . , Ad. Set

Sn :=

( n−1∑
k=0

1A1 ◦ T k, . . . ,

n−1∑
k=0

1Ad
◦ T k

)
For α ∈ [0, 1] and β = (β1, . . . , βd) ∈ [0, 1]d with

∑d
i=1 βi = 1, we write ζα,β for a [0, 1]d-

valued random variable whose distribution is characterized as follows:

(1) If 0 < α < 1, the ζα,β is equal in distribution to
(
ξ1, . . . , ξd

)
/
∑d

i=1 ξi, where ξ1, . . . , ξd
are R+-valued independent random variables with the one-sided α-stable distribu-
tions characterized by E

[
exp(−λξi)

]
= exp(−βiλ

α), λ > 0, i = 1, . . . , d.

(2) If α = 1, the ζ1,β is equal a.s. to the constant β.

(3) If α = 0, the distribution of ζ0,β is
∑d

i=1 βiδe(i) with e(i) = (1{i=j})
d
j=1 ∈ [0, 1]d for

i = 1, . . . , d.

The ζα,β are called multidimensional generalized arcsine distributions, and appear as the
limits of the joint distribution of the occupation time ratios of diffusions on multiray. See
[1] and [5]. We now give our general limit theorem as follows.

Theorem 2.1. Under certain conditions, the following hold.

(1) If Sn/n under ν ′ d−→ ζ as n → ∞ for some probability measure ν ′ ≪ µ, then ζ
d
= ζα,β

for some α and β, and Sn/n under ν
d−→ ζα,β as n → ∞ for any probability measure

ν ≪ µ.

(2) Let α ∈ [0, 1) and β1, . . . , βd ̸= 0. Then the following are equivalent:

(i) Sn/n under ν
d−→ ζα,β as n → ∞ for any probability measure ν ≪ µ.

(ii) There exists a regularly varying function R at ∞ with index −α such that

µ(x ∈ Y ; Tx, . . . , T nx ∈ Ai) ∼ βiR(n), as n → ∞, i = 1, . . . , d.

The case d = 2 was due to [4]. The proof in [4] was based on the moment method, which
does not seem to be suitable for our multiray case. We adopt instead the double Laplace
transform method, which was utilized in the study [1] of occupation times of diffusions on
multiray. We will also explain applications to Lamperti’s processes and interval maps with
indifferent fixed points.
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Controlled Kufarev-Loewner equations and the
Sato-Segal-Wilson Grassmannian

Roland Friedrich

University of Saarbrücken, Faculty of Mathematics, D-66123 Saarbruecken,
Germany.

In this talk, which is based on joint work with Takafumi Amaba, we
shall be concerned with the lifted Kufarev-Loewner equation to the universal
Grassmannian and its relation to the tau function. In order to achieve this,
a precise technical understanding of the variation of the involved Faber poly-
nomials and Grunsky coefficients is necessary. An important role is played
by the action of the Witt algebra. In order to put the talk(s) into perspec-
tive some background information will be given about its origin which is
algebro-geometric conformal field theory and integrable systems.



Arbitrage theory in large financial markets

Yushi Hamaguchi∗ Kyoto university

1 Introduction

In mathematical finance classical market models consist of an Rd-valued semimartingale

on some probability space which describes the discounted price process of d financial assets.

In this talk we consider a large financial market which consists of infinitely many financial

assets. This concept was introduced by Y. Kabanov and D. Kramkov [1] to formalize

a market where hundreds of financial assets are available and then several notions and

characterizations of arbitrage in large markets were developed [2].

An arbitrage opportunity is the possibility to make a profit in a financial market without

risk. The principle of no-arbitrage states that a mathematical model of a financial market

should not allow for arbitrage opportunities. The condition of no-arbitrage is essentially

equivalent to the existence of an equivalent martingale measure for the price process and

this is crucial to the modern theory of finance such as the option pricing theory or the

utilty maximization problem.

2 Generalized strategies and arbitrage

We consider a large financial market model consisting of a sequence of semimartingales

S = {(Sn
t )t∈[0,T ]}n∈N on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) which describes

the discounted price process of infinitely many financial assets. We denote the n-th small

market by Sn = (Sk)k≤n.

Definition 1. • A strategy in the n-th small market is an Rn-valued predictable pro-

cess which is Sn-integrable. The wealth process corresponding to a strategy H is the

stochastic integral H • Sn.

• We say that a strategy H in the n-th small market is admissible if its wealth process

H • Sn is bounded from below.

• We denote the set of all admissible strategies in the n-th small market by Hn and the

set of attainable claims in the n-th small market by Kn = {(H • Sn)T |H ∈ Hn}.

• We say that the n-th small market satisfies NA (No Arbitrage) if Kn ∩ L0
+ = {0}

where L0
+ denotes the convex cone of nonnegative random variables on (Ω,F ,P).
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The admissibility condition is imposed to exclude so called “doubling strategies”. The

condition NA says that there exists no admissible strategy which satisfies (H • Sn)T ≥ 0 a.s.

(without risk) and P{(H • Sn)T > 0} > 0 (positive profit).

The corresponding notions of trading strategies or arbitrage in a large financial market

S are as follows;

Definition 2. • For each n ∈ N, let Hn be an Rn-valued, predictable, Sn-integrable

process. A sequence H = (Hn)n∈N is called generalized strategy if (Hn •Sn) converges

in the Emery topology to a semimartingale Z, which is called a generalized stochastic

integral (or a generalized wealth process) and denoted by Z = H • S.

• A generalized strategy H = (Hn)n∈N is called admissible if the approximating sequence

(Hn)n∈N is uniformly admissible.

• We denote the set of all generalized admissible strategies by H and the set of approx-

imately attainable claims in the large market by K = {(H • S)T |H ∈ H}.

• We say that a large market satisfies NGA (No Generalized Arbitrage) if K∩L0
+ = {0}.

The notion of generalized stochastic integral with respect to a sequence of semimartin-

gales was introduced by De. Donno and Pratelli [3], which formalizes the idea of a trading

strategy in which each asset can contribute, possibly with an infinitesimal weight.

3 A change of numéraire

We deal with the change of numéraire problem in large financial markets. Consider

a model X = ((Sn)n∈N, 1, V ), where V is a positive semimartingale describing a new

numéraire (that is, a new currency unit). If the currency unit is changed to the new

numéraire V , the price process X will be multiplied by the exchange ratio 1
V
and the price

process under this new numéraire becomes Z = ((S
n

V
)
n∈N,

1
V
, 1). We will talk about the

condition under which the NGA condition is preserved under a change of numéraire.
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Discrete approximations for non-colliding SDEs

Dai Taguchi (Osaka University)
joint work with

Hoang-Long Ngo (Hanoi National University of Education)

Abstract

In this talk, we consider discrete approximations for non-colliding particle systems. We
introduce a semi-implicit Euler-Maruyama approximation which preservers the non-colliding
property for some class of non-colliding particle systems and provide a strong rate of conver-
gence in Lp-norm. We also consider some modified explicit/implicit Euler-Maruyama schemes.

Non-colliding particle systems

A non-colliding particle systems X = (X(t) = (X1(t), . . . , Xd(t)))t≥0 is a solution of the following
system of stochastic differential equations (SDEs)

dXi(t) =

∑
j 6=i

γi,j
Xi(t)−Xj(t)

+ bi(Xi(s))

 dt+

d∑
j=1

σi,j(X(t))dWj(t), i = 1, . . . , d, (1)

with X(0) ∈ ∆d = {x = (x1, . . . , xd)∗ ∈ Rd : x1 < x2 < · · · < xd}, γi,j = γj,i ≥ 0 and
W = (W (t) = (W1(t), . . . ,Wd(t))∗)t≥0 a d-dimensional standard Brownian motion.

The existence and uniqueness of a strong non-colliding solution to (1) have been studied
intensively by many others. However, there are still few results on the numerical approximation for
such kind of systems. To the best of our knowledge, the paper of Li and Menon [4] is the only work
in this direction. Li and Menon introduced an explicit “tamed” Euler-Maruyama approximation
since the coefficient bi are super linear growth. However, their scheme unfortunately does not
preserve the non-colliding property of a solution, which is an important characteristic of the SDE
(1).

Recently, many authors study numerical approximation for one-dimensional SDEs with bound-
ary (e.g. Bessel process dXt = dt/Xt + dWt, Xt > 0 and CIR process dXt = (a − bXt)dt +

X
1/2
t dWt, Xt > 0). Dereich, Neuenkirch and Szpruch [2] introduced an implicit Euler-Maruyama

scheme for CIR process and showed that the rate of convergence is 1/2, and extended to one-
dimensional SDEs with boundary condition by Alfonsi [1] and Neuenkirch and Szpruch [5].

Discrete approximations for non-colliding particle systems

Inspired by [1, 2, 5], we define a semi-implicit Euler-Maruyama scheme for a solution of non-

colliding SDE (1) as follows: X(n)(0) := X(0) and for each k = 0, . . . , n− 1, X(n)(t
(n)
k+1) is defined

1



as the unique solution in ∆d of the following equation:

X
(n)
i (t

(n)
k+1) = X

(n)
i (t

(n)
k ) +

∑
j 6=i

γi,j

X
(n)
i (t

(n)
k+1)−X(n)

j (t
(n)
k+1)

+ bi

(
X

(n)
i (t

(n)
k )
) T

n

+

d∑
j=1

σi,j

(
X(n)(t

(n)
k )
){

Wj(t
(n)
k+1)−Wj(t

(n)
k )
}
,

where t
(n)
k := kT/n. Since the equation

ξi = ai +
∑
j 6=i

ci,j
ξi − ξj

, i = 1, . . . , d,

has a unique solution in ∆d for each ai ∈ R and ci,j ≥ 0 with ci,i+1 > 0 (see Proposition 2.2 in

[6]), thus X(n) = (X(n)(t
(n)
k ))k=0,...,n is well-defined for each n ∈ N.

In this talk, under some assumptions on the constants γi,j and the coefficients bi, σi,j , we
will show that the SDE (1) has a unique global strong solution on ∆d and the Euler-Maruyama
approximation X(n) converges to the unique solution to the non-colliding SDE (1) in Lp-sense for
some p ≥ 1 or 2 with convergence rate n1/2 or n. More preciously, we will show that there exists
C > 0 such that,

E

[
sup

k=1,...,n
|X(t

(n)
k )−X(n)(t

(n)
k )|p

]1/p
≤
{
Cn−1/2, if bi are Lipschitz continuos and p ≥ 1,
Cn−1, if bi ∈ C2

b (R;R) and p ≥ 2,

(see Theorem 2.8 and 2.9 in [6]). Note that the singular coefficients 1
xi−xj

make the system difficult

to deal with. In order to overcome this obstacle, we need an upper bound for both moments and
inverse moments of Xi(t)−Xj(t).
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Heat trace asymptotics for equiregular
sub-Riemannian manifolds

Yuzuru Inahama ∗

This is a jointwork with Setsuo Taniguchi (Kyushu University) and can be found at
arXiv Preprint Server (arXiv:1706.02450).

We study a “div-grad type” sub-Laplacian with respect to a smooth measure and
its associated heat semigroup on a compact equiregular sub-Riemannian manifold. We
prove a short time asymptotic expansion of the heat trace up to any order. Our main
result holds true for any smooth measure on the manifold, but it has a spectral geometric
meaning when Popp’s measure is considered. Our proof is probabilistic. In particular, we
use S. Watanabe’s distributional Malliavin calculus.

In Introduction of his textbook on sub-Riemannian geometry [3], R. Montgomery
emphasized the importance of spectral geometric problems in sub-Riemannian geometry
by asking “Can you ’hear’ the sub-Riemannian metric from the spectrum of its sublapla-
cian?” (Of course, this is a slight modification of M. Kac’s renowned question.) In the same
paragraph, he also mentioned Malliavin calculus, which is a powerful infinite-dimensional
functional analytic method for studying stochastic differential equations (SDEs) under
the Hörmander condition on the coefficient vector fields.

However, there is no canonical choice of measure on a general sub-Riemannian mani-
fold and hence no canonical choice of sub-Laplacian. Therefore, in order to pose spectral
geometric questions, one should consider a subclass of sub-Riemannian manifolds. In this
regard, the class of equiregular sub-Riemannian manifolds seems suitable for the follow-
ing reason. As Montgomery himself proved in Section 10.6, [3], there exists a canoni-
cal smooth volume called Popp’s measure on an equiregular sub-Riemannian manifold.
Popp’s measure is determined by the sub-Riemannian metric only.

In this talk we prove a short time asymptotic expansion of the heat trace up to an
arbitrary order on a compact equiregular sub-Riemannian manifold. Our main tool is
Watanabe’s distributional Malliavin calculus.

Let M = (M,D, g) be a sub-Riemannian manifold and µ be a smooth volume on M .
(D is a subbundle of TM that satisfies the Hörmander condiyion at every point and g
is an inner product on D.) We study the second-order differential operator of the form
△ = divµ∇D, where ∇D is the horizontal gradient in the direction of D and divµ is the
divergence with respect to µ. (In our convention, △ is a non-positive operator.) By the
way it is defined, △ with its domain being C∞

0 (M) is clearly symmetric on L2(µ). If M is
compact, then △ is known to be essentially self-adjoint on C∞(M) and et△/2 is of trace
class for every t > 0, where (et△/2)t≥0 is the heat semigroup associated with △/2.

Now we are in a position to state our main result in this paper. As we have already
mentioned, it has a spectral geometric meaning when µ is Popp’s measure.
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Theorem 1 Let M be a compact equiregular sub-Riemannian manifold of Hausdorff di-
mension ν and let µ be a smooth volume on M . Then, we have the following asymptotic
expansion of the heat trace:

Trace(et△/2) ∼ 1

tν/2
(c0 + c1t+ c2t

2 + · · · ) as t ↘ 0 (1)

for certain constants c0 > 0 and c1, c2, . . . ∈ R.

Since the asymptotic expansion in Theorem 1 is up to an arbitrary order, we can prove
meromorphic prolongation of the spectral zeta function associated with △ by a standard
argument. Denote by 0 = λ0 < λ1 ≤ λ2 ≤ · · · be all the eigenvalues of −△ in increasing
order with the multiplicities being counted and set

ζ△(s) =
∞∑
i=0

λ−s
i (s ∈ C, ℜs > ν

2
).

By the Tauberian theorem, the series on the right hand side absolutely converges and
defines a holomorphic function on {s ∈ C | ℜs > ν/2}.

Corollary 2 Let assumptions be the same as in Theorem 1. Then, ζ△ admits a mero-
morphic prolongation to the whole complex plane C.

To the best of our knowledge, Theorem 1 and Corollary 2 seem new for a general
compact equiregular sub-Riemannian manifold. It should be noted, however, that the
leading term of the asymptotics (1) is already known. See Métivier (1976) for example.
No explicit value of c0 is known in general. For some concrete examples or relatively small
classes of compact equiregular sub-Riemannian manifolds, the full asymptotic expansion
(1) or the meromorphic extension of the spectral zeta function was proved. Most of such
classes are subclasses of step-two or corank-one sub-Riemannian manifolds.

Our proof of Theorem 1 is based on Takanobu’s beautiful result [2] on the short time
asymptotic expansion of hypoelliptic heat kernels on Rd on the diagonal. Using results
in Taniguchi (1983) and Grong-Thalmaier (2016)/Thalmaier (2016), we can do the same
thing on a compact manifold. (The former developed manifold-valued Malliavin calculus
under the partial Hörmander condition, while the latter constructed△/2-diffusion process
on M via stochastic parallel transport.)
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