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Let C be the set of smooth curves c : R → R2. Let G = SU(nmat) (nmat ≥ 2), and g =
su(nmat)), the Lie algebra of G equipped with the inner product ⟨·, ·⟩g, minus the Killing form. Let

Ω1 = Ω1(R2, g) denote the space of g-valued smooth 1-forms on R2. Let A = A1dx
1 + A1dx

2 ∈ Ω1

(A1, A2 ∈ C∞(R2, g)). The parallel transport hc,A(t) ∈ G (t ∈ R) along c ∈ C is de�ned by the
di�erential equation

dhc,A(t)

dt
= A (ċ(t))hc,A(t) =

2∑
k=1

Ak(c(t))ċk(t)hc,A(t), hc,A(0) = 1G (1)

Conjecture 1. There exists a sequence of Ω1-valued random variables A(j) (j ∈ N) on a probability
space (P,Ω), and a complete metric space (G, d) with G ⊂ C(R, G) such that

(1) P
[
hc := limj→∞ hc,A(j) exists in G for all c ∈ C

]
= 1.

(2) The set of G-valued random variables {hc : c ∈ C, c is a loop} obeys the law of the Wilson loops
of Yang�Mills (YM) theory on R2 (see e.g. [1, 5, 6, 4]).

Generally a YM theory is formulated on a Riemannian manifold (mainly with dimension ≤ 4). YM
on R2 is the simplest (and physically trivial) case of the YM theory; nevertheless, the rigorous proof
of the above conjecture does not seem easy. We will give a partial result on this conjecture.

Let ∆i (i ≥ −1) be the Littlewood�Paley block, and Mj :=
∑

i≤j−1 ∆i be the jth `molli�cation'

operator on S ′(R2), which satis�es limj→∞ Mju = u.
Let W be a g-valued standard Gaussian white noise on R2. De�ne the jth smooth approximation

W (j) ∈ C∞(R2, g) of W by W (j) := MjW. De�ne the Ω1-valued random variable A(j) = A
(j)
1 dx1 +

A
(j)
2 dx2 ∈ Ω1 (A

(j)
1 , A

(j)
2 ∈ C∞(R2, g)) by

A
(j)
1 (x) ≡ 0, A

(j)
2 (x) :=

ˆ x1

0

W (j)(ξ, x2)dξ, x = (x1, x2) ∈ R2,

The condition A
(j)
1 (x) ≡ 0 is called the axial gauge condition.

Let Cp-var([s, t], G2(Rd)) (p ∈ (2, 3)) denote the space of p-variation weak geometric rough paths.
For x ∈ C1-var([s, t],Rd) (the space of continuous functions of bounded variation), let S2(x) ∈
Cp-var([s, t], G2(Rd)) be the step-2 canonical lift of x (see [3, 2]).

De�nition 2. Let V : Re → L(Rd,Re). Let (x(n))n be a sequence in C∞([0, T ],Rd). y ∈ C([0, T ],Re)
is called a FV solution of the (formal) ODE

dy = V (y)dx(·), y(0) = y0 ∈ Re (2)

if the limit
lim

n→∞
S2(x

(n)) =: x ∈ Cp-var([0, T ], G2(Rd))

exists, and y is a solution of the rough di�erential equation (RDE)

dy = V (y)dx, y(0) = y0 ∈ Re

in the Friz�Victoir (FV) sense [3, Def. 10.17]. If the solution is unique we write y = Π(V )((x
(n)), y0).
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We see Eq. (1) is rewritten as

dhc,A = V (hc,A)dX, hc,A(0) = 1G ∈ G, X(t) = Xc,A(t) :=

ˆ
c↾[0,t]

A.

where V (M) (M ∈ Mat(nmat,C)) is the linear operator on Mat(nmat,C) ∼= R2n2
mat de�ned by

V (M)N := NM , N ∈ Mat(nmat,C).
Let Cnice ⊂ C be a set of `well-behaved' curves in C (roughly speaking, the curve c ∈ Cnice does not

rotate around a point in R2 in�nitely many times). Let X
(j)
c := Xc,A(j) and X

(j)
c = (1, X

(j)
c ,X(j)

c ) :=

S2(X
(j)
c ).

Lemma 3 (rough path convergence in Lp). Let α = 1/p ∈ (1/3, 1/2) and q ∈ [1,∞). Suppose

c ∈ Cnice. Then there exists Xc ∈ Cα-Höl([0, T ], G2(g)) such that X
(j)
c → Xc in Cα-Höl([0, T ], G2(g))

and Lq(P), i.e.

lim
j→∞

∥∥∥dCC,α-Höl;[0,T ]

(
Xc,X

(j)
c

)∥∥∥
Lq(P)

= 0,

where dCC,α-Höl;[0,T ] denotes the canonical metric on Cα-Höl([0, T ], G2(g)) (α-Hölder Carnot�
Carathéodory metric).

Theorem 4. There exists a subsequence
(
A(jn)

)
n∈N of

(
A(j)

)
j
such that for any �nite subset S ⊂ Cnice

(i) P
[
hc := Π(V )((X

(jn)
c )n, 1G) exists for all c ∈ S

]
= 1,

(ii) The set of G-valued random variables {hc : c ∈ S, c is a loop} obeys the law of the Wilson loops
of YM theory on R2.
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