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Introduction



» Let X = (Xy)o<s<1 be a solution of the one-dimensional SDE
t
X, =x0+ f o(X,)dWs, xg € R, t €[0,T], (1)
0

» W = (Wy)o<i<r : standard one-dimensional Brownian motion
» diffusion coefficiento : R = R.



Definition 1
The Euler-Maruyama approximation X = (X;"))OS,ST of equation (1) is
defined by

t
X" =x+ f o(X™ )dW,
t 0 7(s)

— y(® (n) _
- Xnn(t) + ‘T(Xun(t))(wt Wa.0)s

where 5(s) = kT /n if s € [kT/n, (k + 1)T/n).

- Note that X:)") =xg,andforany k = 1,...,n,

(n) _ y(n) (n)
XkT/n - X(k—l)T/n + O-(X(k—l)T/n

YWirin = Wi—1yr/n)
and

() :
X(Z_DT/" and (Wer/n — Wi—1)r/2) are independent.
~ N@O,T/n)

= We can simulate the random variable X(T").



Maruyama' introduce the approximation in order to prove Girsanov’s
theorem (Cameron-Martin-Maruyama-Girsanov theorem) for the solution
of one-dimensional SDE dX; = b(X;)dt + dW,.

On the transition probability functions of the Markov process., Nat. Sci. Rep.
Ochanomizu Univ. 5, 10-20. (1954).

2A note on approximation for stochasitc differential equations. Séminaire de probabilités
de Strasbourg, 22, 155-162, (1988)



Maruyama' introduce the approximation in order to prove Girsanov’s
theorem (Cameron-Martin-Maruyama-Girsanov theorem) for the solution
of one-dimensional SDE dX; = b(X;)dt + dW,.

Theorem 1 ( Kanagawa (1988), Faure (1992), Kloeden and
Platen (1992) )

If the coefficient o is Lipschitz continuous then the Euler-Maruyama
approximation has a strong rate of order 1/2, i.e., forany p > 1,

C
E[ sup |X, - X"ppr < —

0<t<T nl/2
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Maruyama' introduce the approximation in order to prove Girsanov’s
theorem (Cameron-Martin-Maruyama-Girsanov theorem) for the solution
of one-dimensional SDE dX; = b(X;)dt + dW,.

Theorem 1 ( Kanagawa (1988), Faure (1992), Kloeden and

Platen (1992) )

If the coefficient o is Lipschitz continuous then the Euler-Maruyama
approximation has a strong rate of order 1/2, i.e., forany p > 1,

c
El sup |X, - X"1"]'"? < —

0<t<T nl/2

Theorem 2 ( Kaneko and Nakao 19882 )

d > 1. Suppose the coefficient o is continuous and linear growth. Under
the pathwise uniqueness for the solution of SDE, it holds that

lim E[ sup |X, - X"] = 0.

n—oo 0<t<T

On the transition probability functions of the Markov process., Nat. Sci. Rep.
Ochanomizu Univ. 5, 10-20. (1954).

2A note on approximation for stochasitc differential equations. Séminaire de probabilités
de Strasbourg, 22, 155-162, (1988)



Pathwise uniqueness and rate of convergence

Theorem 3 (Yamada and Watanabe 19713)
If the diffusion o is a-Hblder continuous with a € [1/2, 1], then the
pathwise uniqueness holds for SDE (1).

30n the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.
11, 155-167 (1971).

4A note on Euler approximations for SDEs with Hélder continuous diffusion coefficients.
Stochastic. Process. Appl. 121, 2189-2200.

5Strong rate of convergence for the Euler-Maruyama approximation of stochastic
differential equations with irregular coefficients. Math. Comp. 85(300), 1793-1819 (2016).

80n the Euler-Maruyama approximation for one-dimensional stochastic differential
eauations with irreaular coefficients. To appear in IMA Journal of Numerical Analvsis.



Pathwise uniqueness and rate of convergence
Theorem 3 (Yamada and Watanabe 19713)
If the diffusion o is a-Hblder continuous with a € [1/2, 1], then the
pathwise uniqueness holds for SDE (1).
Theorem 4 (Gydngy and Rasonyi, 20114)

Suppose that the diffusion o is a-Hélder continuous wiht @ € [1/2,1].
Then there exists a constant C such that

— ifae/2,1],
sup E[IX, - X1 <{ "¢Y

0<t<T —_ ifa=1/2.
log n
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Pathwise uniqueness and rate of convergence

Theorem 3 (Yamada and Watanabe 19713)

If the diffusion o is a-Hblder continuous with a € [1/2, 1], then the
pathwise uniqueness holds for SDE (1).

Theorem 4 (Gydngy and Rasonyi, 20114)

Suppose that the diffusion o is a-Hélder continuous wiht @ € [1/2,1].
Then there exists a constant C such that

— ifae/2,1],
sup E[IX, - X1 <{ "¢Y

0<t<T —_ ifa=1/2.
log n

- Ngo and Taguchi prove the statements in Thm 4 hold for SDEs with
discont. drift_g:UE 56

30n the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.
11, 155-167 (1971).
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Non-pahtwise uniquneness, Non-strong solution,
Weak existence

Example 2 (Girsanov)
Leta € (0,1/2). For the SDE dX; = |X/|*dW, with X, = 0, the pathwise
uniqueness does not hold.



Non-pahtwise uniquneness, Non-strong solution,
Weak existence

Example 2 (Girsanov)
Leta € (0,1/2). For the SDE dX; = |X/|*dW, with X, = 0, the pathwise
unigueness does not hold.
Example 3 (Tanaka’s equation)
Let X be a Brownian motion. Define W; := j(;t sgn(X)d X, (BM). Then,
X = fot sgn(X)dW, but X does not admit a strong solution. (If X is
strong sol, then X c #11))
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unigueness does not hold.
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Theorem 5 (Engelbert and Schmidt 1984)
Define

d
I(0) := {xem;v8>o,f—y =oo}, Z(0) := {x € Ry o(x) = 0}
- 0¥ (x +y)

The SDE (1) (dX, = o(X,)dW,) has a non-exploding weak sol. which is
unique in the sense of probability law if and only if I(d) = Z (o).



Non-pahtwise uniquneness, Non-strong solution,
Weak existence

Example 2 (Girsanov)
Leta € (0,1/2). For the SDE dX; = |X/|*dW, with X, = 0, the pathwise
unigueness does not hold.
Example 3 (Tanaka’s equation)
Let X be a Brownian motion. Define W; := j(;t sgn(X)d X, (BM). Then,
X = fot sgn(X)dW, but X does not admit a strong solution. (If X is
strong sol, then X c #11))

Theorem 5 (Engelbert and Schmidt 1984)
Define

d
1(0):={xemz;v8>0,f—y=oo}, Z(0) := {x € Ry o(x) = 0}
- 0¥ (x +y)

The SDE (1) (dX, = o(X,)dW,) has a non-exploding weak sol. which is
unique in the sense of probability law if and only if I(d) = Z (o).

Remark 1
If0 < o< o(x) <o, thenI(o) = Z(0) = 0.



Pathwise uniqueness

Assumption 1

(i) o is measurable, bounded and uniformly positive, i.e. there exist
o,0 > 0 such that forany x € R,

g<o<o.

(i) [bounded 2-variation] There exists a bounded and strictly increasing
function f, such that for any x,y € R,

lo(x) = o) < Ifo(x) = fo I

7One-dimensional stochastic differential equations involving the local times of the
unknown process. In Stochastic analysis and applications (pp. 51-82). Springer Berlin
Heidelberg.



Pathwise uniqueness

Assumption 1

(i) o is measurable, bounded and uniformly positive, i.e. there exist
o,0 > 0 such that forany x € R,

g<o<o.

(i) [bounded 2-variation] There exists a bounded and strictly increasing
function f, such that for any x,y € R,

lo(x) = o) < Ifo(x) = fo I

Theorem 6 (Le Gall 19847)
Under Assumption 1, the pathwise uniqueness holds for SDE (1).

7One-dimensional stochastic differential equations involving the local times of the
unknown process. In Stochastic analysis and applications (pp. 51-82). Springer Berlin
Heidelberg.



Problem:
Under Assumption 1,

Q1)

lim E[|X, — Xﬁ”’u =0°?
n—oo

E[X, - X" < <2
! log n



Main result



Assumption 2
Suppose that

oc=pof,

where p is 1/2-Hélder continuous with 0 < o < p(x) < o and
f = fi— f2 fi: bdd, strictly increasing with finite dis-conti. points.

80n maps of bounded p-variation with p > 1. Positivity, 1998, Volume 2, Issue 1, 19-45.
9Strong convergence for the Euler-Maruyama approximation of stochastic differential
equations with discontinuous coefficients. Preprint, arXiv:1604.01174v2
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- Ass. 2= Ass. 1 with f, = llpl2 ,(fi + f2}. Indeed,

lo(x) — e < llpll2{fi(x) = L] + 12(x) = LOBY = f-(x) = f- IV

- Structural Theorem: Chistyakov and Galkin® prove that g : E — X is of
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Assumption 2
Suppose that

oc=pof,

where p is 1/2-Hélder continuous with 0 < o < p(x) < o and
f = fi— f2 fi: bdd, strictly increasing with finite dis-conti. points.

- Ass. 2= Ass. 1 with f, = llpl2 ,(fi + f2}. Indeed,

lo(x) = o)l < lplh28lfix) = LI+ 120 = LOBY? = 1fo(x) = fr IV
- Structural Theorem: Chistyakov and Galkin® prove that g : E — X is of
bounded p-variation if and only if g = p o f, where p is 1/p-Hdlder conti.

f is nondecreasing, E is nonempty subset of R and X is metric space.
Theorem 7 (Ngo and Taguchi, 2016, preprint® )

Suppose Ass. 2. Then there exists C > 0 such that

C
sup E[IX; - X"l < —, Vn > 3.
log n

0<t<T d

80n maps of bounded p-variation with p > 1. Positivity, 1998, Volume 2, Issue 1, 19-45.
9Strong convergence for the Euler-Maruyama approximation of stochastic differential
equations with discontinuous coefficients. Preprint, arXiv:1604.01174v2



Idea of proof



Standard proof (Lip. case)
Since

t
Xi- X" = f r(X,) = X" )dW,
0 7u(s)

t t
= [ oo - o+ [ o) - o jaw..
0 0 nlS

if o is Lipschitz continuous we have,

EllX, - X\"P]
t t
<2 f Ello(X,) - o(X;")P1ds +2 f Ello(X,") - (X" )P1ds
0 0 n
t t
<C f E[IX, - X" *1ds + C f E(IX," - X Flds
0 0 §
d C
<C f E[1X, — X" Plds + —.
0 n
By Gronwall’'s inequality, we conclude

_ymwpenz o Y
BX, - X7P1 < .



However, if o is NOT Lipschitz conti., we cannot use Gronwall’s
inequality.
We must consider the following differences:

(i)
lo(Xy) = o(X™)]

~» We CAN use the proof of Le Gall (Yamada and Watanabe
approximation argument).

(i
lo(X(") = (X" )|
1n(s)

~» We CANNOT use the proof of Le Gall.
~» We need to consider new idea.



GOAL
GOAL: FIND some « € (0,1) such that

T
f Eflo(X") - o(X" )Plds < <
0 a(s) n<

Remark 2
If o is bdd, UE and Hélder continuous, Lemaire and Menozzi (2010)'°
prove the density of Xi”) satisfy the Gaussian two sided bounded:

C_lgc'lt(x()’y) < Pi")(xo,}’) < Cge(x0,y),

by using the parametrix method. Using this, we can prove

fo B, (X") ~ £ (X" )ilds <

1/2

However, if o is NOT Hélder continuous, it is difficult to prove the
Gaussian two sided bounded.

00n some Non-Asymptotic Bounds for the Euler Scheme. Electron J. Probab., 15,
1645-1681



Tightness

New idea of the proof is “tightness" of the Euler-Maruyama scheme.

Lemma 1
Suppose o : mble and o < o < o. Let ¢cy: const. of BDG ineq. For any
ex > 0 with 6 := X5 < T, we have
C4T
P( sup |X" - X\"| > &) < 6y, 2

t<s<t+0
foranyt € [0,T] and n € N.

Remark 3
(2) = (X™),ex : tight in C[0, T, that is, for any € > 0, there exists a
compact set K c C[0,T] such that forany n € N,

Po (X" '(K)>1-s,

(e.g. Billingsley, Theorem 8.3).



Tightness

Corollary 1

Let (y,). be a decreasing seq. s.t. ¥, € (0,11 andy, | 0 and y,n* = .
Define

~ 4
c —_ 1/4— Yl Xn€

&y 1= , T:=TY%c / Ty Xn i= , 0, = z
174,172 4 T —

Y. I C40

<T

T
n
andforeachk=1,...,n—1,

Qpp i= {w €Q; sup |X§") - X(k';)l > s,,} .

Moo UDT
n n

Then

I[D(s-!k,n) S 6an = 7n-



Key lemma

Lemma 2

Suppose Ass. 2 holds. (o = p o (fi = f2), 0 < 0(x) < o, discontinuous
points of o are finite.). Then,

T
f Bllo(X") - o(X") )Plds <
0

2/5
Proof: Using Corollary 1,

T
| Etloa) - o s
0 1 (S)
(k+1)T

n-1
= f E[jo(X"™) - o(x(") IPlg,, + 1o: Ylds

k=0 % "n
n-1 001 n-1 001
—2 " " n,k
<do P(Q,)ds + ) A dg
&L kT
k=0 n = n
n—1 ()T

<40 Ty, + f A s,
kT



AP = Ello(x") - o(X" )P1g: ]
’ n($) kon
- (1) (n) 12
= Bllo(X;") —o(X, I Loc {1ywegenio) + 1y ggon ()]
=i AP 4 g1R2

where for the discontinuous points of o denoted by S(o) := {a‘lf, ceesap

m
S (o) := U[a;’ - &p, a;’ + g,]
i=1

A2 Onthe set @ N {X(" ¢ §°(c)}, we have

S@) N [X" A X1,

(n) (n)y _
X; vXﬂ]_(o,

thus, since o = p o f is "picewise" 1/2-Holder conti.

2 2
lo(X") = o X < Nl 1K = X
Hence

n—1 &k+DT

T
A2 ge < (n) _ y(n) < .
u s ds<C , E[X; an(s)l]ds <
k=0 n



A" k 1. Recall that

A;”k’l = Ello(X(") = o(X" )Plo; Tymeguup)] < 4521E[1xi,.,esg,,(0)].
Thus,
n—-1 @ T
> f T AMas < 4o fo Lyoncgen oS- 3)
k=0"Y "

Since o is uniformly positive,
t
(x"y, = f (X" DPds > o’t.
0 Il

Hence by the occupation time formula, (3) is bounded by
_ T —
40-22'_2]E,[f 1X(")ESS"((T)d<X(n)>s] =40 Z_Z]E[f leSS"(a')L;w(X(n))dx]
0 s R

= 45 02 f E[L:(X™)ldx
- Sen (o)

< CLeb($*(0)), (v sup E[L;(X™)] < c0),

neN,xelR

m
= CZ Leb([a;’ — &y, a;’ + &,]) = 2Cmes,,.
i=1



Therefore, we conclude

’ 1
f E[|0'(X§n)) O_(X(n) )| lds < C{'yn + m + gn}
0

By choosing y, := 2/5, and then

Therefore, we obtain

T 1+7
f Ello(X") - o(x" )P1ds < C{ ‘4
0 (s

n2l5

This concludes the proof.

L}s C(2+"c').

nl/2 n2l5



Yamada-Watanabe approximation technique



Yamada-Watanabe approximation technique

For each § € (1, ) and & € (0, 1), we define a continuous function
Vs ¢ R = R with supp ¢, C [&/6, €] such that

2
f Yse(z)dz = 1and 0 < Ys.(2) < , z>0.
&/é zl

0go

Since fm zlogédz = 2, there exists such a function .. We define a
function ¢s. € C*(R; R) by

x|y
$5,5(x) ==f(; j(:*/fa,a(Z)dzdy.

It is easy to verify that ¢s, has the following useful properties:

[x| < & + ¢s.(x), forany x € IR, (4)
0 <I¢, (¥I<1,foranyxeR, (5)

——1g/55(Ix]), forany x e R\ {0}.  (6)

P5.(EIXD) = Pas(lxD) < Tlog 6



Proof of Theorem 7

From (4), for any ¢ € [0, T], we have

X, = X" < & + foe(X, = X").
Using Ité’s formula, we have

Pso(X; = X) = M2 4+ J10°,

where
t
= [, = ) {ox) - o Db aw,
n,§£ = f ¢u (X, — Xin))lo-(Xs) _ U'(X(n) )|2ds.
1nu(s)

Since ¢ and o are bounded, M™%¢ is martingale hence E[M}" 0]

=0.



Proof of Theorem 7
Using (6)

noe _ 1 ! ’” (n) (n) |12
5 =3 | a0 - XN - o s

t

T 1es56(1Xs — X))
<2 f
01X, - X"|log 6

—. yhosl n,0,,2
=:J, +J, .

(lo(X)) = o X")F + |o(X,") = (X" HP)ds

Using the Assumption 1, approximation argument, IBP and estimation of
local time, we have

c
Jn,6,8,1 < . 9
! log 6 ®)
Using Lemma 2, we have

T
1

_ E[lo(X™) = o(X™ )1ds < —. (10
slog(?jo‘ llor(X,7) = o€ 'l"(s))l] = glog & n2/5 (10)

L™ <



It follows from (7), (8), (9) and (10) that

C c6 1
sup E[|X, - X"|] < &£+ — —_
0<t<T logd &elogé n?/5

forany € € (0,1) and 6 € (1, ). By choosing € = @ and 6 = n'/%, we

obtain

1 c cn's 1
sup E[IX, - X[ < e —_
0<t<T logn  llogn log ~Llogn n?

c c

< — +—
logn pl/s’

This concludes the proof.



Remark on degenerate case



Theorem 8 (Hairer, Hutzenthaler and Jentzen (2015)')
Let X be a solution of 4-dimensional SDE dX; = u(X,)dt + BdW, with

1(1,00)(x4) €XP (_x2_1-1) cos ((x3 -0)- exp(xi))

0 0
0 1
ﬂ(x) = 1 ,B = 0 0
1(-1,1)(x4) exp (— l‘xf) 0 0
1
where C := fol e~ VA=) gy If Xy = 0, then for any @ € [0, co),
0 ifa=0,

. @ - (I T a — (n)qy —
Jim A"E{IX, - X7l = lim aELX,] - ELX ‘{ o ifa>0.

Remark 4

Leobacher and Szélgyenyi (2016)'? prove that by using the same
argument of Cor. 1, the L*-conv. rate is 1/5 when the drift is picewise
Lipschitz and diffusion coefficient is Lip. conti. and degenerate.

"Loss of regularity for Kolmogorov equation. Ann. Probab. 43(2), 468-527
2Convergence of the Euler-Maruyama method for multidimensional SDEs with
discontinuous drift and degenerate diffusion coefficient, arXiv:1610.07047.
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