Central limit theorems for non-symmetric random walks on nilpotent covering graphs

難波 隆弥 (岡山大学) e-mail: sc422113@s.okayama-u.ac.jp (石渡 聡氏 (山形大学) および河備 浩司氏 (岡山大学) との共同研究)

1 はじめに

グラフ上のランダムウォーク (RW) は現在盛んに研究が進展している対象で、多くの分野からのアプローチが図られている.特に周期性を持つ無限グラフ、例えば結晶格子上の RW については多くの研究がなされている.ここに X が結晶格子であるとは,捩れのない有限生成アーベル群 Γ が X に自由作用し,その作用による商グラフ $X_0:=\Gamma\backslash X$ が有限グラフであるときをいう.小谷—砂田は離散幾何解析の手法を経由して結晶格子上の RW を研究し,その中で周期的実現 $\Phi_0:X\longrightarrow\Gamma\otimes\mathbb{R}$ の(修正)調和性とよばれる概念を定めた([3]).石渡—河備—小谷は [2] の中で結晶格子上の非対称 RW を考察し,修正調和性の仮定の下,[2] 種類の汎関数中心極限定理を得ている.

一方、石渡は被覆変換群 Γ が捩れのない有限生成べき零群であるような被覆グラフ (べき零被覆グラフ)X 上の対称 RW について議論し、 Γ を格子として含むべき零 Lie 群 G への周期的実現 $\Phi_0: X \longrightarrow G$ の調和性を定め、この下で推移半群に関する中心極限定理を得ている ([1]) ものの、プロセスレベルでの収束に関しては示されていなかった。

本講演では、べき零被覆グラフ上の非対称 RW を扱い、その G への周期的実現の修正調和性を定義する。その仮定の下、石渡による結果 ([1]) が非対称の場合にも拡張できることを述べる。その上プロセスレベルでの収束も導かれること、すなわち汎関数中心極限定理が得られることを報告する。

2 べき零被覆グラフとその周期的実現の修正調和性

以下、べき零被覆グラフ X=(V,E) (V: 頂点集合,E: 向きつき辺の集合)上の RW を考察する。 $e\in E$ に対して,o(e), t(e), \overline{e} でそれぞれ辺 e の始点,終点,e の逆向きの辺を表し, $E_x:=\{e\in E\,|\, o(e)=x\}\, (x\in V)$ とする。いま, $p:E\longrightarrow (0,1]$ を Γ -不変な推移確率とし,それから定まる RW を $\{w_n\}_{n=0}^\infty$ とするが,p の Γ -不変性に注意し,商グラフ $X_0=(V_0,E_0)$ 上の RW $\{\pi(w_n)\}_{n=0}^\infty$ も考察する。ここに, $\pi:X\longrightarrow X_0$ は被覆写像である。また $m:V_0\longrightarrow (0,1]$ を V_0 上の (正規化) 不変測度とし,その X 上への Γ -不変なリフトをも $m:V\longrightarrow (0,1]$ で表す。さて $H_1(X_0,\mathbb{R})$, $H^1(X_0,\mathbb{R})$ を各々 X_0 の 1 次ホモロジー群,1 次コホモロジー群とする。いま, X_0 上の RW に対して,homological direction を $\gamma_p:=\sum_{e\in E_0}p(e)m(o(e))e\in H_1(X_0,\mathbb{R})$ で定める。また X_0 上の RW が (m-) 対称であることを $p(e)m(o(e))=p(\overline{e})(t(e))$ $(e\in E_0)$ が成り立つときと定めるが,これは $\gamma_p=0$ と同値である。

さて、Malćev の定理より連結かつ単連結なべき零 Lie 群 G で、 Γ がその格子と同型であるものがとれる。 そこで X を周期的に実現する連続モデルとして我々は G を採用する。 また、以

下では G がステップ 2 の自由べき零 Lie 群であると仮定する。 つまり、G の Lie 環 $\mathfrak g$ が直和分解 $\mathfrak g=\mathfrak g^{(1)}\oplus\mathfrak g^{(2)}=\mathfrak g^{(1)}\oplus[\mathfrak g^{(1)},\mathfrak g^{(1)}]$ をもつ。 いま、被覆写像 π を介し自然な全射準同型 $\rho_{\mathbb R}: \mathrm{H}_1(X_0,\mathbb R)\longrightarrow \mathfrak g^{(1)}$ をとる。一方、 Hodge -小平の定理によれば $\mathrm{H}^1(X_0,\mathbb R)$ 上には X_0 上の(修正)調和 1-形式の空間から、p により定まる内積が誘導できる。これは $\rho_{\mathbb R}$ を用いて $\mathfrak g^{(1)}$ 上に誘導でき、それより定まる平坦計量を $\mathrm{Albanese}$ 計量とよんで g_0 で表す。さて X の周期的実現 $\Phi_0: X\longrightarrow G$ の(修正)調和性を

$$\sum_{e \in E_x} p(e) \log \left(\Phi_0(o(e))^{-1} \cdot \Phi_0(t(e)) \right) \Big|_{\mathfrak{g}^{(1)}} = \rho_{\mathbb{R}}(\gamma_p) \quad (x \in V).$$
 (1)

で定義する. (1) の右辺の量を $asymptotic \ direction$ とよぶ. ここで RW が対称, つまり $\gamma_p=0$ の ときは $\rho_{\mathbb{R}}(\gamma_p)=\mathbf{0}_{\mathfrak{g}}$ であるが, 逆は一般に成立しないことに注意する.

3 主結果

以下べき零被覆グラフXの修正調和実現 $\Phi_0: X \longrightarrow G$ で、基点 $x_* \in V$ に対し $\Phi_0(x_*) = \mathbf{1}_G$ なるものをとる。いま、 \mathfrak{g} 上の RW を $\Xi_n := \log\left(\Phi_0(w_n)\right) (n=0,1,2,\dots)$ で定め、G-値連続確率過程列 $\{\mathcal{Y}_t^{(n)}\}_{n=0}^\infty$ を $\mathcal{Y}_t^{(n)} := \tau_{n^{-1/2}}\left(\exp(\mathfrak{X}_t^{(n)})\right) (t \in [0,1])$ で定義する。ここに τ_{ε} ($0 \le \varepsilon \le 1$) は G 上の dilation で、 $\mathfrak{X}_t^{(n)} := \Xi_{[nt]} + (nt - [nt]) (\Xi_{[nt]+1} - \Xi_{[nt]})$ である。ここで $\{V_1,\dots,V_d\}$ を $(\mathfrak{g}^{(1)},g_0)$ の正規直交基底とする。このとき、G が自由という仮定から $\{[V_i,V_j]:1 \le i < j \le d\}$ が $\mathfrak{g}^{(2)}$ の基底を与えることに注意する。また、 \widetilde{e} を $e \in E_0$ の X 上へのリフトとして

$$\beta(\Phi_0) := \sum_{e \in E_0} p(e) m(o(e)) \log \left(\Phi_0 \left(o(\widetilde{e}) \right)^{-1} \cdot \Phi_0 \left(t(\widetilde{e}) \right) \right) \Big|_{\mathfrak{g}^{(2)}} = \sum_{1 \le i < j \le d} \beta(\Phi_0)^{ij} [V_i, V_j]$$

とおく. $\gamma_p=0 \Longrightarrow \beta(\Phi_0)=\mathbf{0}_{\mathfrak{g}}$ に注意せよ. また, $(Y_t)_{t\geq 0}$ を $\mathbf{1}_G$ 出発の G-値拡散過程で次の SDE

$$dY_t = \sum_{1 \le i \le d} V_i(Y_t) \circ dB_t^i + \beta(\Phi_0)(Y_t) dt$$

の解とする. ただし, $(B_t)_{t\geq 0}=(B_t^1,\dots,B_t^d)_{t\geq 0}$ は \mathbb{R}^d -値標準 Brown 運動である. また, この SDE に対応する生成作用素を $\mathcal{A}:=(1/2)\sum_{1\leq i\leq d}V_i^2+\beta(\Phi_0)$ とする. このとき次の定理を得た.

定理 1 $ho_{\mathbb{R}}(\gamma_p)=\mathbf{0}_{\mathfrak{g}}$ とする. このとき $t\geq 0$ および $f\in C_{\infty}(G)$ に対して, 次の中心極限定理

$$\lim_{n \to \infty} \left\| L^{[nt]} P_{n^{-1/2}} f - P_{n^{-1/2}} e^{-tA} f \right\|_{\infty}^{X} = 0$$

が成り立つ. ここに L は X 上の推移作用素であり, P_{ε} $(0 \le \varepsilon \le 1)$ はスケール作用素である. さらに汎関数中心極限定理: $(\mathcal{Y}_t^{(n)})_{t \ge 0} \Longrightarrow_{n \to \infty} (Y_t)_{t \ge 0}$ $in \ C_{\mathbf{1}_G}([0,1];G)$ が成り立つ.

時間が許せば、定理の証明および具体的なべき零被覆グラフ上の RW の例についても触れたい.

参考文献

- [1] S. Ishiwata: J. Math. Soc. Japan **55** (2003), pp. 837–853.
- [2] S. Ishiwata, H. Kawabi and M. Kotani: arXiv:1510.05102.
- [3] M. Kotani and T. Sunada: Math. Z. **254** (2006), pp. 837–870.