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In this talk, we prove local well-posedness of the stochastic complex Ginzburg-Landau equation

with a complex-valued space-time white noise ξ in the three-dimensional torus T3 = (R/Z)3{
∂tu = (i+ µ)△u+ ν(1− |u|2)u+ ξ on (0,∞)×T3,

u(0, ·) = u0(·).
(CGLE)

Here, i =
√
−1, µ is a positive constant and ν is a complex constant.

Before starting our discussion, we introduce notation. We denote by D the space of all smooth

functions on T3 and by D′ its dual. For every α ∈ R, 1 ≤ p, q ≤ ∞, we denote by Bα
p,q the Besov

space, which is defined by the completion of the space of smooth functions on T3 under the Besov

norm ∥·∥Bα
p,q

. To define the Besov norm, we use the Littlewood-Paley block {△m = F−1ρmF}∞m=−1,

where F and F−1 are the Fourier transformation and its inverse, respectively, and {ρm}∞m=−1 is

the dyadic partition of unity. For notational simplicity, we set the Hölder-Besov space Cα = Bα
∞,∞

and denote by CTCα the space of all Cα-valued continuous functions on [0, T ] for every T > 0. Next

we introduce the notion of paradifferential calculus. For every f ∈ Cα and g ∈ Cβ , we define the

resonance f � g and the praproduct f 4 g. They give the decomposition fg = f 4 g+ f � g+ f 5 g.

The paraproduct f 4 g can be defined for any α, β ∈ R, but the resonance f � g can be defined for

α+ β > 0. Hence, in order define products fg, it is necessary that α+ β > 0 holds. Finally, we set

L1 = ∂t − {(i+ µ)△− 1}, P 1
t = et{(i+µ)△−1} and I(u)t =

∫ t

−∞ P 1
t−sus ds for u : [0,∞) → D′.

Now we return to well-posedness of the equation (CGLE). For some reason, we write (CGLE)

as L1u = ν(1− |u|2)u+ u+ ξ and discuss the problem. To illustrate difficulty of this problem, we

consider a stationary solution to the linear equation L1Z = ξ on (0,∞)×T3. The solution is given

by Zt = I(ξ)t formally and it is not a function but a distribution with respect to the space variable

in the dimension three. More precisely, Zt belongs C− 1
2−κ for any κ > 0. Hence the products Z2

t ,

ZtZt, Z
2
t Zt and so on are not defined a priori. Since the irregularity of the solution to (CGLE)

comes from the white-noise, it is natural to guess that the space regularity of ut is not better than

that of Zt and that the product |ut|2ut = u2
tut is not defined a priori.

To overcome this difficulty, we use the theory of paracontrolled distributions developed in

[GIP15]. The method consists a deterministic part and a probabilistic part.
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In the deterministic part, we construct the solution map of (CGLE) from the space X κ
T∗

of

driving vectors to the space Dκ,κ′

T∗
of solutions, where T∗ is a life time of a solution and κ, κ′ are

positive small parameters, and show that the solution map is continuous. To be precise, for every

0 < κ < κ′ < 1/18 and T > 0, we call a vector of space-time distributions

X = (X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X )

∈ CT C− 1
2−κ × (CTC−1−κ)2 × (CT C1−κ)2 × L

1
2−κ, 14−

1
2κ

T × (CTC−κ)6 × (CT C− 1
2−κ)2

which satisfies L1X = X and L1X = X a driving vector of (CGLE). We denote by X κ
T

the set of all driving vector. The definition of Dκ,κ′

T∗
is a little complicated. Because we transform

(CGLE) to a system of two equations with respect to (v, w) so that u = X − νX + v + w solves

(CGLE). The space Dκ,κ′

T∗
is where (v, w) lives.

We explain the meanings of the graphical symbols , , , ,. . . . They are just coordinates

mathematically; however, the dot and the line are icons for the white noise and the operation I,

respectively. Hence, represents I(ξ) = Z. Moreover, and are icons for the complex conjugate of

Z and the product ZZ, respectively. So means I(Z2Z). Finally, denotes the resonance term;

represents I(Z2Z) � Z.

In the probabilistic part, we construct a driving vector Xϵ from a smeared noise ξϵ with a

parameter 0 < ϵ < 1 and show convergence of Xϵ as ϵ ↓ 0. Of course, we assume that ξϵ → ξ

as ϵ ↓ 0. More precisely, we set Xϵ, = Zϵ = I(ξϵ)t, X
ϵ, = Zϵ and Xϵ, = (Zϵ)2; however, since

cϵ1 = E[Zϵ
tZ

ϵ
t ] diverges as ϵ ↓ 0, we need to consider renormalization and set Xϵ, = ZϵZϵ − cϵ1. In

order to define Xϵ,τ for , , , and , it is necessary to consider renormalization. The

other renormalization constants are cϵ2,1 = 1
2E[Xϵ,

(t,x) � Xϵ,
(t,x)] and cϵ2,2 = E[Xϵ,

(t,x) � Xϵ,
(t,x)]. To

show convergence of Xϵ, we express △mXτ by the Itô-Wiener integrals and estimate their kernels.

From the discussion above, we obtain our main result:

Theorem 1. Set cϵ = 2(cϵ1 − νcϵ2,1 − 2νcϵ2,2). Let u0 ∈ C− 2
3+κ′

. Consider the renormalized equation{
∂tu

ϵ = (i+ µ)△uϵ + ν(1− |uϵ|2)uϵ + νcϵuϵ + ξϵ, on (0,∞)×T3,

u(0, ·) = u0(·).
(CGLE’)

Then cϵ → ∞ as ϵ ↓ 0 and there exists a unique process uϵ and a random time T ϵ
∗ such that

• uϵ solves (CGLE’) on [0, T ϵ
∗)×T3,

• T ϵ
∗ converges to some a.s. positive random time T∗ in probability,

• uϵ converges to some process u defined on [0, T∗)×T3 in the sense that uϵ → u in probability

in CtC− 3
2+κ′

for every 0 < t < T∗. Furthermore, u is independent to the choice of ξϵ.
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