GLOBAL WELL-POSEDNESS OF SINGULAR STOCHASTIC PDES

MASATO HOSHINO (THE UNIVERSITY OF TOKYO)

We discuss global-in-time existence of the solution of semilinear stochastic PDE of the type

$$\mathcal{L}u = F(u, \nabla u) + \xi, \quad t > 0, \ x \in \mathbb{T}^d,$$

where \mathcal{L} is a parabolic operator, F is a nonlinear operator, and ξ is a spacetime white noise on $\mathbb{R}_+ \times \mathbb{T}^d$. The main difficulty of this equation is that the nonlinear operator F is not well defined in general because we expect that $u(t, \cdot) \in \mathcal{C}^{\frac{2-d}{2}}$. Recently, Gubinelli-Imkeller-Perkowski introduced the *paracontrolled calculus* as a tool of giving a meaning to this equation under some assumptions. They solved some singular stochastic PDEs locally in time in the following sense. We replace ξ by a smooth noise ξ^{ϵ} which approximate ξ in $\epsilon \downarrow 0$ and consider the solution u^{ϵ} of

$$\mathcal{L}u^{\epsilon} = M^{\epsilon}F(u^{\epsilon}, \nabla u^{\epsilon}) + \xi^{\epsilon},$$

where M^{ϵ} is a suitable *renormalization* of F. Then u^{ϵ} converges to a universal limit u in a short time. However, global-in-time existence is not known in general. We discuss this problem for the following two examples.

First example is the coupled KPZ equation

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta} \partial_x h^{\gamma} + \xi^{\alpha}, \quad t > 0, \ x \in \mathbb{T}$$

for an \mathbb{R}^d -valued process $h = (h^{\alpha})_{\alpha=1}^d$. Here $(\Gamma_{\beta\gamma}^{\alpha})_{1 \leq \alpha, \beta, \gamma \leq d}$ are given constants and $\xi = (\xi^{\alpha})$ is an \mathbb{R}^d -valued space-time white noise. This is a joint work with Tadahisa Funaki (The University of Tokyo).

Theorem 1. Let $\xi^{\epsilon}(t,x) = (\xi(t) * \rho^{\epsilon})(x)$ be a smeared noise with an even mollifier $\rho^{\epsilon}(x) = \epsilon^{-1}\rho(\epsilon^{-1}x)$. Then there exist constants $C^{\epsilon,\beta\gamma} = O(\epsilon^{-1})$ such that the solution h^{ϵ} of

$$\partial_t h^{\epsilon,\alpha} = \tfrac{1}{2} \partial_x^2 h^{\epsilon,\alpha} + \tfrac{1}{2} \Gamma^\alpha_{\beta\gamma} (\partial_x h^{\epsilon,\beta} \partial_x h^{\epsilon,\gamma} - C^{\epsilon,\beta\gamma}) + \xi^{\epsilon,\alpha}$$

converges to a universal limit h in a short time.

Furthermore, if we assume that

$$\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta} = \Gamma^{\beta}_{\alpha\gamma}$$

for all α, β, γ , then there exists a μ -full set H such that the limit h starting at h_0 with $\partial_x h_0 \in H$ exists globally in time. Here μ is the distribution of an \mathbb{R}^d -valued spatial white noise on \mathbb{T} .

Second example is the complex Ginzburg-Landau equation

$$\partial_t u = (i+\mu)\Delta u + \nu(1-|u|^2)u + \xi, \quad t > 0, \ x \in \mathbb{T}^3$$

for a complex-valued process u. Here $\mu > 0, \nu \in \mathbb{C}$, and ξ is a complex space-time white noise. This is a joint work with Yuzuru Inahama (Kyushu University) and Nobuaki Naganuma (Osaka University).

Theorem 2. Let $\xi^{\epsilon}(t, x) = (\xi(t) * \rho^{\epsilon})(x)$ be a smeared noise with a mollifier $\rho^{\epsilon}(x) = \epsilon^{-3}\rho(\epsilon^{-1}x)$. Then there exists a constant $C^{\epsilon} = O(\epsilon^{-1})$ such that the solution u^{ϵ} of

$$\partial_t u^{\epsilon} = (i+\mu)\Delta u^{\epsilon} + \nu(1-|u^{\epsilon}|^2 + C^{\epsilon})u^{\epsilon} + \xi^{\epsilon}$$

converges to a universal limit u in a short time Furthermore, if $\mu > \frac{1}{2\sqrt{2}}$ and $\Re \nu > 0$, then the limit u exists globally in time for all initial values $u_0 \in C^{-2/3+}$.