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3D dynamic Φ4 model (stochastic quantization eq.)

We study the following stochastic PDE on (0,∞)× T3 for
R-valued u = u(t, x):

∂tu = △xu − u3 + ξ, with u(0, · ) = u0.

Here, ξ = ξ(t, x) is space-time WN on R× T3.
We consider mild solutions only. Hence, this actually solves

ut = et△u0 − I (u3)t + Xt ,

where I (z)t :=
∫ t

0
e(t−s)△zsds and X = I (ξ) is OU process.
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But, this SPDE is highly ill-posed. The reason is as follows:

When u0 ≡ 0 and the nonlinear term −u3 is absent, the
solution is X itself. Its regularity for a fixed t is
(−1/2)− := −1/2− δ (∀δ > 0).

A natural guess: Regularity of u cannot be better than
that of X , (−1/2)− at best.
=⇒ ut is just a distribution, not a function.
=⇒ u3

t is ill-defined.
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There exist 3 methods. All of them are quite new.

Hairer’s theory of regularity structures.
Fields medal 2014 Hoshino’s talk.

Gubinelli-Imkeller-Perkowski’s paracontrolled calculus,
also known as theory of paracontrolled disributions.
Catellier-Chouk’s preprint. This talk.

Kupiainen’s theory based on renormalization group theory.
Perhaps, almost nobody in Japan knows this.

Both Hairer’s and GIP’s theory are descendants of Gubinelli’s
version of rough path theory (controlled path theory).
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Gubinelli’s version of rough path theory

Rough path theory was invented by T. Lyons in 1998.
Now there are some variants:

Lyons’ original rough path theory,

Gubinelli’s controlled path theory,

Lyons-Yang’s new theory, which has no name yet.

The singular SPDE theories we discuss here emerged from
Gubinelli’s version, so one must first recall it.
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Driven ODE = Controlled ODE
x : [0, 1] → Rd , conti., ”nice enough”
σ : Rn → Mat(n, d), coefficients, ”nice enough”

♠ ODE controlled by x .

dyt = σ(yt)dxt , y0 ∈ Rn.

Its proper definition is the following integral eq.

yt = y0 +

∫ t

0

σ(ys)dxs .

If a line integral along x on RHS can be defined, then this
equation can be formulated.
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♠ Sufficient conditions for line integral to make sense

x is piecewise C 1 =⇒ dxt = x ′tdt

x is of bdd var., or Lipschitz conti.

x is of α-, y (or σ(y)) is of β-Hölder conti, α + β > 1.
=⇒ ∃ Young (= generalized RS) integral.

We usually use Young integral with α = β. So, α = 1/2 is a
threshold. No Young integration if 0 < α ≤ 1/2.

But, Brownian sample paths are (1/2)−-Hölder conti.
So, deterministic line integral along Brownian paths were
impossible (before the advent of RP theory).
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♠ Lyons idea: Add more information to x in a systematic way
and generalize the notion of paths. (=Lifting a path).

More precisely,

Not just x itself, but iterated integrals of x are also taken into
consideration.
Structure of tensor algebra/nilpotent Lie group is used.
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Line integrals and driven ODEs can be defined
deterministically. Itô map is continuous in this world
(Lyons’ continuity theorem)

If you put rough path lift of BM into Lyons-Itô map, then
you get a sol. of Stratonovich SDE.

Loosely speaking, ”de-randomization of SDE” or
”separation of measure and differential equation”

What is NOT used? martingale, Markov property,
filtration. Strong taste of ”real analysis”
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Definition of rough path △ := {(s, t) | 0 ≤ s ≤ t ≤ 1}.
1/3 < α ≤ 1/2 A continuous map
X = (1,X 1,X 2) : △ → R⊕ Rd ⊕ (Rd ⊗ Rd)
is said to be a rough path if
(i) K. T. Chen’s identity 0 ≤ s ≤ u ≤ t ≤ 1,

X 1
s,t = X 1

s,u + X 1
u,t ,

X 2
s,t = X 2

s,u + X 2
u,t + X 1

s,u ⊗ X 1
u,t .

(ii) α-Hölder condition ∥X 1∥α < ∞, ∥X 2∥2α < ∞, where

∥A∥α := sup
0≤s<t≤1

|As,t |/|t − s|α.
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Example (Lift of a usual path)
x : [0, 1] → Rd , Lipschitz conti., x0 = 0. Set

X 1
s,t := xt − xs , X 2

s,t :=

∫ t

s

(xu − xs)⊗ dxu

- This X = (X 1,X 2) is clearly a RP. Called a lift of x .
- The geometric RP space GΩα(Rd) is defined to be the
closure of this kind of lifts of the usual paths.
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RP integral à la Gubinelli

Want to line integral along X = (X 1,X 2) ∈ GΩα(Rd).

Since α ≤ 1/2, existing line integral theories fail.

He defined a Banach space Qα
X (R

n) of integrands w.r.t.
X , which consists of paths which locally behaves like X .

This space is different for different RP X .

Elements of Qα
X (R

n) are called controlled paths w.r.t. X .

Integration map along X is from a space Qα
X (R

d) of
controlled paths to another space Qα

X (R
n) of controlled

paths.

Yuzuru Inahama Kyushu University, Japan

Gubinelli-Imkeller-Perkowski’s approach to the 3D dynamic Φ4 model



Definition of a controlled path
A triple (Y ,Y ′,RY ) is called an integrand (= a controlled
path) of X ∈ GΩα(Rd) if
(i) Y ∈ Cα([0, 1],Rn)
(ii) Y ′ ∈ Cα([0, 1],L(Rd ,Rn))
(iii) RY ∈ C 2α(△,Rn)
(iv) Yt − Ys = Y ′

s · X 1
s,t + RY

s,t (0 ≤ s ≤ t ≤ 1)

The last item means ”behaviour of Y is similar to (or better
than) that of X”.
[Notation] (Y ,Y ′) ∈ or (Y ,Y ′,RY ) ∈ Qα

X (R
n).

Qα
X (R

n) is a Banach space with ∥Y ′∥α + ∥RY ∥2α + |Y0|+ |Y ′
0|

Yuzuru Inahama Kyushu University, Japan

Gubinelli-Imkeller-Perkowski’s approach to the 3D dynamic Φ4 model



- If σ : Rn → Mat(n, d) (nice) and (Y ,Y ′) ∈ Qα
X (R

n),
then

∫ ·
0
σ(Ys)dXs ∈ Qα

X (R
n) with “derivative” σ(Yt).

-Therefore, for each RP X , a solution of controlled ODE

Yt = y0 +

∫ t

0

σ(Ys)dXs

is a fixed point of the integration map on RHS in Qα
X (R

n).

-Thus, controlled ODE are generalized for RPs.
-Lyons-Itô map (X , y0) → Y is continuous.
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Lifting Brownian motion (the only probabilistic part)
- Let µ be Wiener measure on C0([0, 1],Rd).
- Want to lift µ to get a measure on GΩα(Rd).
- But, a generic conti. path does not admit a deterministic lift.
- So, we use piecewise linear approximation.
- For w ∈ C0([0, 1],Rd) and m ∈ N, let w(m) be the dyadic
piecewise linear approx. associated to
{0, 1/2m, 2/2m, . . . , 2m/2m = 1}.
Since w(m) is Lipscitz, RP lift W (m) exists.

∃W := lim
m→∞

W (m) µ-a.s. in GΩα(Rd)

(Brownian RP or a canonical lift of BM)
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If W is used as a driver X of RDE above, then sol. Y
coincides a.s. with sol. of

dyt = σ(yt) ◦ dwt with given y0

Proof: Lyons’ continuity theorem and Wong-Zakai’s
approximation theorem.

Solution of an SDE is obtained as a image of continous map！
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Summary: Key ingredients of controlled path theory

1 First we have Wiener measure (=BM) defined on the
usual path space.

2 Paths in the usual sense are given additional information
in a deterministic way (= lift or enhancement).
[the deterministic part 1].

3 For each lifted object (i.e., RP), Banach spaces of
controlled paths are defiend so that the integral equation
under consideration makes sense. A solutions is a fixed
point in such a Banach spaces. [the deterministic part 2].

4 Brownian motion admits a lift a.s. [the probabilistic part].
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Paracontrolled calculus

A quick summary of Bony’s paraproduct (on torus T3)

{ρj ∈ C∞(R3, [0,∞))|j ≥ −1} Dyadic partition of unity.
i.e., radial,

∑
j≥1 ρj ≡ 1, ρj(ξ) = 0 if |ξ| /∈ [2j−1, 2j+1].

Define △j := F−1ρjF (j ≥ −1) Littlewood-Paley block

Using these, Besov space Bα
∞,∞(T3) =: Cα is defined.

∥ϕ∥Bα
∞,∞(T3) := sup

j≥−1

{
2αj∥△jϕ∥L∞(T3)

}
(α ∈ R)

When α > 0, it coincides with the usual Hölder space.
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• For f ∈ Cα, g ∈ Cβ, the product fg can be defined if and
only if α + β > 0. If so, fg ∈ Cα∧β.

• Let f , g : T3 → R. Decompose fg as follows:

fg = f ◁ g + f ◦ g + f ▷ g

where f ◁ g :=
∑

i<j−1 △i f△jg , f ◦ g :=
∑

|i−j |≤1 △i f△jg .
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• Paraproduct f ◁ g is always defined, but its regularity may
not be so nice. Its behaviour is similar to g (if f is a function).

Let f ∈ Cα, g ∈ Cβ. Then,
f ◁ g ∈ Cβ (if α > 0) and f ◁ g ∈ Cα+β (if α < 0).

• Resonant term f ◦ g can be defined iff fg can be defined
(⇐⇒ α + β > 0). In that case, its regularity is nice:
f ◦ g ∈ Cα+β ( if α + β > 0)
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The OU process X = I (ξ) plays the role of BM.
Its sample paths belongs to

CTC−1/2−κ := C ([0,T ], C−1/2−κ) (∀κ > 0)

Write a generic element of this space by X (deterministic).

What king of quantities are needed for Φ4
3-model to make

sense? A natural answer is

X 2, I(X 2), I(X 3), I(X 3) ◦ X , I(X 2) ◦ X 2, I(X 3) ◦ X 2,

(−1)− 1− (1/2)− 0− 0− (−1/2)−
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Note that X⃗ = (X ,X 2, I(X 2), . . .) just stands for a generic
element of

CTC(−1/2)− × CTC1− × CTC(1/2)− × · · · × CTC(−1/2)− .

So, X 2 does not necessarily mean the square of X .
But, one true constraint is imposed:
I(X 2)t = et△I(X 2)0 + I (X 2)t .
(This is something like Chen’s identity for RPs.)
An element of the above product space is called a driver if it
satisfies the above constraint. It plays the role of a RP.
Set Z := {drivers}.
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Paracontrolled distributions

Let a driver X⃗ given. u ∈ CTC(−1/2)− of the form

u = X − I(X 3) + u† ◁ I(X 2) + u♯

for some u† ∈ CTC(1/2)− and u♯ ∈ CTC(3/2)− is called a
paracontrolled distribution w.r.t. X .
(Something like a controlled path in RP theory)

The space of PCD is denoted by DX⃗ . It is naturally identified

(?) with CTC(1/2)− × CTC(3/2)− and hence is a Banach space.
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[Key] If we plug a PCD u into the RHS of u = −I (u3) + X ,
then we have a PCD again. Thus, RHS of Φ4

3-equation is a
continuous map from DX⃗ to itself. Its fixed point is a solution
of Φ4

3-equation in a generalized sense.

To prove this, we need deep results from Bony’s paraproduct
theory.

By a standard method, we can prove a unique time-local
solution exists for each X⃗ . Moreover, (X⃗ , u0) 7→ u is
continuous.
(Analogous to Lyons’ continuity theorem)
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Heuristics: Why integration map is from DX⃗ to itself?
Assume X = X is nice. For simplicity, set
Ψ := u − X = −I (X 3) + u† ◁ I (X 2) + u♯ ∈ CTC(1/2)− . Then,

Γ(u) := X − I (u3) = X − I (X 3)− I (Ψ3)− 3I (ΨX 2)− 3I (Ψ2X ).

Clearly, Ψ3 ∈ CTC(1/2)− =⇒ I (Ψ3) ∈ CTC(5/2)− (Γ(u)♯-part).

But, ΨX 2 and Ψ2X may be ill-defined.
We will illustrate how these terms are taken care of.

[Note] I is always well-defined. It improves the Besov
regularity by 2−.
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Let’s look at I (ΨX 2) = I (Ψ ◁ X 2) + I (Ψ ◦ X 2) + I (Ψ ▷ X 2).
We will check RHS = Ψ ◁ I (X 2) + [terms of reg. (3/2)−].
• Clearly, I (Ψ ▷ X 2) is of reg. (3/2)−.
• By a non-trivial relation of paraproduct and I ,

I (Ψ ◁ X 2) = Ψ ◁ I (X 2) + [a term of reg. (3/2)−].

• Ψ ◦ X 2 is not well-defined a priori. But,

Ψ ◦ X 2 = −I (X 3) ◦ X 2 + (u† ◁ I (X 2)) ◦ X 2 + u♯ ◦ X 2

The 3rd term u♯ ◦ X 2 is well-defined. The 1st term I (X 3) ◦ X 2

is given in the definition of enhancement.
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The 2nd term is still ill-defined. By the commutation formula,

(u† ◁ I (X 2)) ◦ X 2 = u† × (I (X 2) ◦ X 2) + Com(u†, I (X 2),X 2).

The last term is of reg (1/2)−. I (X 2) ◦ X 2 is given in the
enhancement. So, the first term is well-def. and of reg 0−.

♠ Similarly, we can show I (Ψ2X ) is of reg. (3/2)−.
♠ Therefore, the integration map Γ can be viewed as a map
from DX⃗ to itself.
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-For X ∈ CTC0+ , we can take X⃗ = (X ,X 2, I(X 2), . . .) in the
literal sense (because X is a function).

-The solution of the eq. driven by this X⃗ coincides with the
classical solution of the eq. driven by X .

-Let X ϵ be a mollified OU process (high frequencies are killed).

Take X⃗ ϵ to be the literal enhancement of X ϵ.
-You may wish X⃗ ϵ would converge as ϵ ↘ 0 in Z (as in RP
theory). Unfortunately, it fails!

-Therefore, the enhancement procedure (=the probabilistic
part) is quite different from its counterpart in RP theory.

Yuzuru Inahama Kyushu University, Japan

Gubinelli-Imkeller-Perkowski’s approach to the 3D dynamic Φ4 model



Enhancement/Renormalization of Noise

X ϵ(t, x) is Gaussian and the components of X⃗ ϵ are its
polynomials =⇒ Wiener chaos theory is available.

By throwing away diverging component (chaos), one can
get converging objects.

The price to pay is that the (S)PDE loses its original
form.

Fortunately, the renormalization constants cϵ1, c
ϵ
2 are

independent of (t, x).
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The answer is(
X ϵ, (X ϵ)2−cϵ1, I [(X

ϵ)2−cϵ1], I [(X
ϵ)3−3cϵ1X

ϵ], I [(X ϵ)3−3cϵ1X
ϵ] ◦ X ϵ,

I [(X ϵ)2−cϵ1] ◦ (X ϵ)2−cϵ2, I [(X ϵ)3−3cϵ1X
ϵ] ◦ (X ϵ)2−cϵ2X

ϵ
)
.

It converges to a certain limit (:= X⃗∞).

The solution of the generalized SPDE driven by X⃗∞ is what
we want.
It is the limit of the solution of the generalized SPDE driven
by the deformed noise (due to local well-posedness).
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The corresponding classical SPDE is given by

∂tu
ϵ = △xu

ϵ − (uϵ)3 + (3cϵ1 + 9cϵ2)u
ϵ + ξ with u(0, · ) = u0.

The renormalization constants cϵ1, c
ϵ
2 ↗ ∞ as ϵ ↘ 0.

Theorem 1

Assume that u0 is not bad. Then, there are diverging
constants cϵ1, c

ϵ
2 such that uϵ converges (locally in time) to a

certain limit u∞ in (−1/2)− Besov topology.

Thus, we have obtained a time-local solution of Φ4
3 equation

after renormalization.
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Summary: Key ingredients of paracontrolled
distribution theory

1 First we have OU process X = I (ξ) whose sample paths
belong to CTC(−1/2)− .

2 Elements of CTC(−1/2)− are given additional information
in a deterministic way (= enhancement).
[the deterministic part 1].

3 For each lifted object (i.e., driver), Banach spaces of
paracontrolled distributions are defiend so that RHS of
Φ4

3-model makes sense. A solutions is a fixed point in
such a Banach spaces. [the deterministic part 2].

4 OU process admits an enhancement a.s. after
renormalization −→ the equation is deformed.
[the probabilistic part].
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Age of time-global solution

- In GIP theory (and RS theory), only time-local solutions are
obtained in general.
- Mourrat-Weber (’16+) proved the global well-posedness by
using the special form of Φ4

3-model. This could be big!

- Consequently, standard problems for SPDEs naturally arise
for this model, too. Invariant measure, Dirichlet form, long
time problems, (random) dynamical systems, Malliavin
calculus, etc.
- Probably, ∃ so many others from the physical viewpoint.
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