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The 3D dynamic Φ4-model driven by space-time white noise
Let us study the following real-valued stochastic PDE on (0,∞)×T3, where
ξ is the space-time white noise on R×T3 associated with L2(R×T3, dtdx)
(T := R/Z);

∂tu = △xu− u3 + ξ with u(0, · ) = u0. (1)

This is also called the stochastic quantization equation and physically very
important, but was formerly ill-defined. We consider (generalized) mild so-
lutions of this SPDE.

If the nonlinear term u3 is absent, then the solution is the Ornstein-
Uhlenbeck process, whose regularity at a fixed time is (−1/2)−, i.e., −1/2−
δ (∀δ > 0). One can naturally guess that the regularity of ut, if it exists, is
probably the same at best. It means that ut is not a function, but merely
a distribution and multiplication like u3 cannot be defined. Therefore, this
equation was not solved. More precisely, it was not even well-defined.

First, Hairer solved it a few years ago in his Fields medal awarded paper
and soon after that two other methods appeared.

• Hairer’s theory of regularity structures [6],

• Gubinelli-Imkeller-Perkowski’s paracontrolled calculus, also known as
theory of paracontrolled disributions [5],

• Kupiainen’s theory based on renormalization group theory [7]. 1

In this series of two survey talks we discuss recent developments of this
stochastic PDE. In the first talk by Y. Inahama, we solve this SPDE via
Gubinelli-Imkeller-Perkowski’s method. In the second talk by M. Hoshino,
we solve this SPDE via Hairer’s method. We remark that both theories are
descendants of Gubinelli’s version of rough path theory.

1Nobody in Japan seems to take notice of it. I hope young (or old) folks who are
familiar with renormalization groups would take a look at it.
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Gubinelli’s version of rough path theory
Rough path theory was invented by T. Lyons, but there are now some versions
of it.

• Lyons’ original rough path theory [8, 10, 9, 3],

• Gubinelli’s controlled path theory [4, 2],

• Lyons-Yang’s new theory [11], 2 which has no name yet.

The singular SPDE theories we discuss here emerged from the second one, so
one must understand or recall it first. In rough path theory, functions (i.e.,
paths) are defined on a one-dimensional set like [0, T ] and the regularity is
measured by the Hölder exponents.

Let x be an Rd-valued α-Hölder continuous path. When α ≤ 1/2, an
Rn-valued controlled ODE like

yt = y0 +

∫ t

0

σ(ys)dxs

does not make sense. Here, σ is a nice function that takes values in the set
of n × d-matrices. The reason is heuristically as follows. y is given by a
(indefinite) line integral along x, so its regularity is probably the same as
that of x, namely α. So is the regularity of σ(y). However,

∫
σ(y)dx cannot

be defined since the sum of the regulairty of the two path x and σ(y) does
not satisfy α + α > 1, which is the condition for Young integral to hold.

To make sense of such a controlled ODE when 1/3 < α ≤ 1/2, a rough
path is introduced. It is of the form (X1

s,t, X
2
s,t)0≤s≤t≤T with X1

s,t = xt − xs

with an algebraic constraint called K. T. Chen’s identity. The first level path
X1 is essentially the same as x, so some new information, that is X2, is added
to x so that the line integral could be defined. 3

For each given rough path X = (X1, X2), Gubinelli introduced a Banach
space of controlled paths. Simply put, a path is controlled by X if its local
behavior is similar to (or better than) that of x = [t 7→ X1

0,t]. Therefore, the
spaces of controlled paths may be different for different rough paths. 4 The
key point of Gubinelli’s theory loosely states that if y is controlled by X, then

2The authors seem confident, but nobody seems to take notice. I hope young (or old)
folks who are familiar with rough paths would take a look at it.

3To make something impossible possible, new information must be added.
4This is important.
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so are σ(y) and the line integral
∫
σ(y)dx. Not only the line integral can be

defined, but it also satisfies reasonable estimates. As a result, a solution of
the controlled ODE above is understood as a fixed point of this integration
map in the Banach space of controlled paths with respect to X. The solution
map (also know as the Lyons-Itô map) is continuous in X and y0. So far,
everything was deterministic and no probability measure was involved.

When we think of applications of rough paths to SDEs like

yt = y0 +

∫ t

0

σ(ys) ◦ dws (Stratonovich),

probability theory comes in, but only in the lifting (enhancing) procedure.
Here, (wt) is the standard d-dimensional Brownian motion. To use rough
path theory, we need W 2. A measurable map w 7→ (W 1,W 2) with the
projection onto the first component being the identity is called a lift or an
enhancement of w. This part cannot be made deterministic. It is not unique,
but a canonical choice is W 2,ij

s,t =
∫ t

s
(wi

u −wi
s) ◦ dwj

u. This is called Brownian
rough path. If we put it in the Lyons-Itô map, then we get a unique solution
of the SDE above (as an image of a continuous map).

To sum up, the rough story of rough path theory is as follows: At the
beginning we have the Wiener measure (or Brownian motion) and the usual
path space which the Wiener measure lives on (or sample paths of Brownian
motion live in). Then;

• Paths in the usual sense are given additional information in a deter-
ministic way (i.e., lift or enhancement). [the deterministic part 1]

• For each lifted object (i.e., rough path), Banach spaces of controlled
paths are defiend so that the integral equation under consideration
makes sense. A solutions is a fixed point in such a Banach spaces. [the
deterministic part 2].

• Brownian motion admits a lift a.s. [the probabilistic part].

In the deterministic parts, the new integration theory of course extends ex-
isting ones.

Dynamic Φ4
3-model via paracontrolled calculus

Paracontrolled calculus was invented in [5]. It was applied to the dynamic
Φ4

3-model by Catellier-Chouk [1]. Unlike the theory of regularity structure,
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paracontrolled calculus has been gradually improved by many people. Con-
sequently, there is no canonical version.

First we rewrite the dyamanic Φ4
3-model in the mild form. Let △ be the

Laplacian on T3 and Pt = et△ be the corresponding semigroup. For a func-
tion (or distribution) u(t, x) defined on (0,∞)×T3, set I(u)t =

∫ t

0
e(t−s)△usds

(the space-time convolution with the heat kernel). Then, the equation (1) is
understood in the mild sense as follows:

ut = Ptu0 − I(u3)t +Xt. (2)

Here, X = I(ξ) is the Ornstein-Uhlenbeck process and solves the linearized
equation: ∂tXt = △xX + ξ. This Gaussian process X plays the role of
Brownian motion in rough path theory.

For each fixed t > 0, the (space) regularity of Xt is (−1/2)− in the Besov-
Hölder sense. One can naturally guess that the regularity of ut would not be
better that that of Xt. Hence, ut is not a function, but a distribution. This
causes a serious trouble since the nonlinear term u3

t cannot be defined in the
usual sense. (On the other hand, I works for any distribution-valued path
fortunately, even if its regularity is very bad).

So, the key question to ask is which kind of information should be added
to the ”sample path” of X in a deterministic way so that the right hand side
of the equation (in particular, u3) makes sense.

A slightly lengthy, but not very difficult heuristic observation tells us that
a possible answer is(

X, X2, I(X2), I(X3), I(X3) ◦X, I(X2) ◦X2, I(X3) ◦X2
)

(3)

with a constraint (∂t − △)I(X2) = X2. This is called a driver of Eq. (1).
Here, ◦ is the resonant term in the paraproduct theory, which is similar to
the usual multiplication, but its regularity slightly better if it exists. (The
resonant term f ◦ g exists if and only if the usual multiplication fg exists).
As you can easily guess, a driver plays the role of a rough path.

Important remark The symbol X is used in two senses in this abstract:
X, X2, I(X2) etc. in (3) are just coordinates of a generic element of

C
(
[0, T ] → C−1/2−κ × C−1−κ × C1−κ × C1/2−κ × C−κ × C−κ × C−1/2−κ

)
(0 < κ ≪ 1). Here, Cα = Bα

∞,∞ stands for the Besov-Hölder space of regular-
ity α ∈ R. Therefore, X2 may not mean X×X in (3) for example. The space
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of drivers is the closed subset of the above path space with the constraint
(∂t −△)I(X2) = X2, which should be understood in the mild senses.

For a given (X,X2, . . . , I(X3) ◦X2) as in (3), we can actually define Ba-
nach spaces of paracontrolled distributions. This plays the role of Banach
spaces of controlled paths in rough path theory. Besov spaces and paraprod-
ucts are used here in an essential way. The right hand side of Eq. (2) makes
sense for a paracontrolled distribution u controlled by the driver (X,X2, . . .).
Loosely speaking, v = v(t, x) is controlled by the driver (X,X2, . . .) if there
exist F ∈ C([0, T ] → C1/2−κ) and G ∈ C([0, T ] → C3/2−κ) such that

vt = I(X3)t + Ft ◁ I(X
2)t +Gt. (4)

Here, ◁ stands for the paraproduct of Ft and I(X2)t.
A rough and heauristic meaning of (4) is as follows: vt is of regualrity

(1/2)−. The first (i.e., coarsest) approximation of vt is given by I(X3)t whose
regualrity is (1/2)−, too. The difference vt − I(X3)t is of better regualrity
1−. This difference should behave like I(X2)t in small scales. (Note that
small scale behavior of Ft ◁I(X

2)t is similar to that of I(X2)t.) If Ft ◁I(X
2)t

is subtracted from vt − I(X3)t, then regualrity is (3/2)−. In other words,
vt − I(X3)t is allowed to have a bad term (a term of regularity less than
(3/2)−) only if it behaves like I(X2)t. If a term of vt − I(X3)t does not look
like I(X2)t, then it must have better regularity (3/2)−.

A solution of Eq. (2) is defined to be a fixed point in an appropriate space
of paracontrolled distribution. Under mild assumptions, well-posedness of
time-local solution can be proven. This is the determistic part of this theory.

Of course, this extends the existing theory. Suppose that X is very nice,
for example, X is a deterministic element in C([0, T ] → Cα) for some α >
0. In this case, we can choose

(
X,X2, . . . , I(X3) ◦ X2

)
in the literal sense

(namely, X2 := X ×X, etc.). Then, a unique solution of the new extended
equation coincides with the one in the usual sense.

Next we discuss the probabilistic part of the theory, that is, enhancement
of the Ornstein-Uhlenbeck process. This part becomes much more compli-
cated than the corresponding part in rough path theory since we need to do
some kind of renormalization.

Let X = I(ξ) be an Ornstein-Uhlenbeck process again. Since we cannot
enhance X directly, we consider a mollified noise Xε at first. (High frequen-
cies are killed. As ε ↘ 0, Xε → X in an appropriate sense). Since sample
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paths of Xε are very nice, we can do the ”literal enhancement” of Xε as
above. Unfortunately, however,

(
Xε, (Xε)2, . . . , I((Xε)3 ◦ (Xε)2)

)
does not

converge! Hence, we cannot get a decent object in this way.
Observe that each component of the above enhanced noise belongs to an

inhomogeneous Wiener chaos (at least for fixed ε, t and x). Fortunately, the
top order terms of the Wiener chaos expansion are all convergent, though
some lower order terms diverge. So, we can throw away these diverging
terms in a systematic way by using Wiener chaos theory to get a meaningful
limiting object on the space of drivers.

In this way we get a kind of SPDE driven by this limiting object. This
procedure is called renomalization. However, we have to pay a price for the
renomalization. The original form of SPDE is lost. We prefer convergence of
the enhanced noise to keeping the original form of the SPDE.

More precisely, there exists diverging real constants cε1 and cε2 (indepen-
dent of t and x) such that(

Xε, (Xε)2 − cε1, I((Xε)2 − cε1), I((Xε)3 − cε1X
ε), I((Xε)3 − cε1X

ε) ◦Xε,

I((Xε)2 − cε1) ◦ ((Xε)2 − cε1)− cε2, I((Xε)3 − cε1X
ε) ◦ ((Xε)2 − cε1)− cε2X

ε
)

converges in the space of drivers. The limit is denoted by(
X∞, (X∞)2, . . . , I((X∞)3) ◦ (X∞)2

)
.

Therefore, we get a generalized (S)PDE driven by the above random drivers.
However, since the noise is deformed, it is not clear what this new (S)PDE

looks like. In this case, fortunately, it is not so hard see that a unique solution
of the new generalized (S)PDE driven by the deformed noise (Xε, (Xε)2 −
cε1, . . .) solves the following (S)PDE in the usual sense:

∂tu
ε = △xu

ε − (uε)3 + (3cε1 + 9cε2)u
ε + ξε, with uε(0, · ) = u0.

Observe that the first order term (3cε1 + 9cε2)u
ε appeared due to the renor-

malization.

In summary, we have the following result. If the initial value u0 is not
so bad, then there exists a random time T∗ > 0 such that uε converges to a
certain limit u∞ on the time interval [0, T∗) in an appropriate Banach space
of paracontrolled distributions.
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Some remarks are in order. (i) The limit u∞ may not solve any (S)PDE in
the usual sense. But, it certainly is a solution of the new generalized (S)PDE
driven by a random driver (X∞, (X∞)2, . . .). So, it is not very strange to call
it a solution of an SPDE.

(ii) In their recent work, Mourrat and Weber [12] proved this equation
in fact has a time-global solution for any driver in a deterministic sense. (In
my view, this could be a breakthrough.) Moreover, their method is new.
Without defining the spaces of paracontrolled distributions, they directly
decompose Eq. (1) into a system of two PDEs, the first one of which is a
linear equation involving the paraproduct with respect to I(X2).
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