On the derivation of noncausal function from its Haar-SFCs *

Shigeyoshi OGAWA (Ritsumeikan University) Hideaki UEMURA (Aichi University of Education)

(i) SFC. Let $f(t, \omega)$ be a random function on $[0, 1] \times \Omega$ and $\{\varphi_n(t)\}$ be a CONS in $L^2([0, 1]; \mathbb{C})$. The system $\{\hat{f}_n(\omega) = \int_0^1 f(t, \omega) \overline{\varphi_n(t)} dW_t\}$ is called the *stochastic Fourier coefficients* (SFCs in abbr.) of $f(t, \omega)$, $\{W(t), t \in [0, 1]\}$ being a Brownian motion on (Ω, \mathcal{F}, P) which starts at the origin. It is of course that the stochastic integral $\int dW$ in the definition of SFCs should adequately be chosen according to the conditions on $f(t, \omega)$. We are concerned with the problem whether $f(t, \omega)$ is identified from the SFCs of $f(t, \omega)$ or not.

In this talk we consider the case that $f(t, \omega)$ is noncausal, and we aimed to identify $f(t, \omega)$ without the aid of a Brownian motion. Moreover, we intend to derive $f(t, \omega_0)$ from SFCs $\{\hat{f}_n(\omega_0)\}$ for almost all ω_0 .

(ii) SFT. Let $\{\varepsilon_n\}$ be an ℓ_2 sequence such that $\varepsilon_n \neq 0$ for all n. Then

$$\mathcal{T}_{(\varepsilon,\varphi)}(f)(t,\omega) = \sum_{n} \varepsilon_{n} \hat{f}_{n}(\omega) \varphi_{n}(t)$$

is called $(\varepsilon_n, \varphi_n)$ -stochastic Fourier transform (SFT in abbr.) of $f(t, \omega)$. In [1] we discussed this problem under the condition that SFCs are defined by employing the Ogawa integral as a stochastic integral and the system of trigonometric functions $e_n(t) = e^{2\pi i n t}$, $n \in \mathbb{Z}$, as a CONS. We assumed the next three conditions on $f(t, \omega)$;

- [H1] For almost all ω , $f(t, \omega)$ is a differentiable function with respect to t satisfying $f'(t, \omega) \in L^2([0, 1], dt)$, where $f'(t, \omega) = \partial f(t, \omega) / \partial t$.
- [H2] $\int_0^1 f(t,\omega)dt \in L^2(\Omega, dP)$ and $f'(t,\omega) \in L^2([0,1] \times \Omega, dtdP)$.
- [H3] For almost all ω , $f(t, \omega)$ is a nonnegative function.

[H.1] assures us of the existence of SFCs, and the (τ_n, e_n) -SFT $\mathcal{T}_{(\tau,e)}(f)(t,\omega)$ of $f(t,\omega)$ exists in $C^1(0,1)$ under the condition [H.2], where $\tau_n = (-4\pi^2 n^2)^{-1}$ if $n \neq 0$ and $\tau_0 = 1$. From [H.3] and the law of iterated logarithm of the Brownian motion we have

$$P\left(\limsup_{h\downarrow 0}\frac{\mathcal{T}_{(\tau,e)}(f)'(t+h,\omega)-\mathcal{T}_{(\tau,e)}(f)'(t,\omega)}{\sqrt{2h\log\log\frac{1}{h}}}=f(t,\omega),\quad\forall t\in\mathbb{T}\right)=1,$$

^{*}This work was partially supported by JSPS KAKENHI Grant Numbers 25400135, 26400152.

where \mathbb{T} is an arbitrary dense subset of (0, 1).

(iii) Haar-SFC. In this talk we employ the Ogawa integral and the system of Haar functions to define SFCs of $f(t, \omega)$. We assume the next two conditions on $f(t, \omega)$;

- [H1'] For almost all ω , $f(t, \omega)$ is a continuous function on [0, 1] satisfying there exists a function $g(s, \omega) \in L^2([0, 1], ds)$ such that $f(t, \omega) f(0, \omega) = \int_0^t g(s, \omega) ds$.
- [H3] For almost all ω , $f(t, \omega)$ is a nonnegative function.

Let $\{H_k^{(n)}; (n,k) \in \Lambda\}$ be the system of Haar functions on [0,1], i.e., $H_0^{(0)}(t) = 1$ and

$$H_k^{(n)}(t) = \begin{cases} 2^{(n-1)/2} & (t_{n.2k} \le t < t_{n.2k+1}) \\ -2^{(n-1)/2} & (t_{n.2k+1} \le t < t_{n.2k+2}) \\ 0 & (\text{otherwise}) \\ & (n = 1, 2, \dots, k = 0, 1, \dots, 2^{n-1} - 1), \end{cases}$$

where $t_{n,k} = k/2^n$. We denote the Haar SFC corresponding to $H_k^{(n)}(t)$ by $\hat{f}_k^{(n)}(\omega)$:

$$\hat{f}_k^{(n)}(\omega) = \int_0^1 f(t,\omega) H_k^{(n)}(t) d_* W_t$$

 $\int d_* W_t$ denoting the Ogawa integral. Set

$$S_N(t.\omega) = \hat{f}_0^{(0)}(\omega)H_0^{(0)}(t) + \sum_{n=1}^N \sum_{k=0}^{2^{n-1}-1} \hat{f}_k^{(n)}(\omega)H_k^{(n)}(t).$$

Then we have the following lemma;

Lemma 1. For $t \in [t_{N,\ell}, t_{N,\ell+1}), \ell = 0, 1, ..., 2^N - 1$, it holds that

$$S_N(t.\omega) = 2^N \left[f(t_{N,\ell+1},\omega)W(t_{N,\ell+1}) - f(t_{N,\ell},\omega)W(t_{N,\ell}) - \int_{t_{N,\ell}}^{t_{N,\ell+1}} g(t,\omega)W(t)dt \right].$$

_

From [H.3] and the law of iterated logarithm of the Brownian motion we have our main theorem;

Theorem 1. Suppose that $f(t, \omega)$ satisfies conditions [H.1'] and [H.3]. Let \mathbb{T} be a countable dense subset of [0, 1). Then we have

$$P\left(\limsup_{N\to\infty}\frac{S_N(t,\omega)}{\sqrt{2^{N+1}\log N}}=f(t,\omega),\quad\forall t\in\mathbb{T}\right)=1.$$

References

 Ogawa,S and Uemura,H.: "On the identification of noncausal functions from the SFCs", RIMS Kôkyûroku 1952 (2015), 128–134