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Skew diffusion



· A skew diffusion is the unique solution of the following one-dimensional
stochastic differential equation with symmetric local time:

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs + (2α − 1)L0

t (X), (1)

where t ∈ [0, T] and |2α − 1| ∈ (0, 1).
·W = (Wt)0≤t≤T is a one-dimensional standard Brownian motion.
· L0(X) = (L0

t (X))0≤t≤T is a symmetric local time of X at the origin, that is

L0
t (X) := lim

ε→0

1
2ε

∫ t

0
1[−ε,ε](Xs)d〈X〉s.

· If α = 1/2, then a solution to the equation (1) is a diffusion process.
· If α = 1 or α = 0, then a solution to the equation (1) is reflected
stochastic differential equation.
·We want to prove that

(i) Existence of the density of a skew diffusion.

(ii) The density of a skew diffusion satisfies a Gaussian upper bound.

·We want to calculate an expectation E[g(XT)] for some function g.
· Application: Physics, PDE and SDEs with dis-continuous coefficients.



Relation to SDEs with dis-continuous coefficients
Define

sα(x) := (1 − α)x1(x ≥ 0) + αx1(x < 0).

By using the symmetric Itô-Tanaka formula, we have

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs + (2α − 1)L0

t (X)

sα ↓ ↑ s−1
α

Z t := sα(Xt) = sα(x) +

∫ t

0
µ(Z s)ds +

∫ t

0
ρ(Z s)dWs,

where

µ(z) := (1 − α)b
( z

1 − α

)
1(z > 0) + αb

( z
α

)
1(z < 0) +

b(0)
2

1(z = 0),

ρ(z) := (1 − α)σ
( z

1 − α

)
1(z > 0) + ασ

( z
α

)
1(z < 0) +

σ(0)
2

1(z = 0).

Weak solution: Krylov [6], Strong solution: Le Gall [7], Nakao [8].



Main result
Let R0 := R \ {0}. Our first main result on this talk is the following.

Theorem 1
Assume that

(i) σ is a positive, bounded and uniformly elliptic function. In particular,
there exist positive constants a and a, such that for any x ∈ R,

a ≤ a(x) := σ2(x) ≤ a.

(ii) b is bounded measurable and a is η-Hölder continuous with
η ∈ (0, 1], i.e., there exist positive constant K such that

sup
x∈R
|b(x)| + sup

x,y∈R,x,y

|a(x) − a(y)|
|x − y|η

≤ K.

Then for any (t, x) ∈ (0, T] × R0, there exists the density function of
Xt(x), pt(x, ·), which satisfies the Gaussian upper bound, i.e., there exist
positive constants C and c such that, for any (t, x, y) ∈ (0, T] × R0 × R,

pt(x, y) ≤
Ce−

(y−x)2

2ct

√
2πct

.



Main result

Moreover, the density pt(x, ·) is a differentiable with respect to an initial
value x ∈ R0 = R \ {0} and satisfies the following conditions:

∂x pt(x, y) ≤
C

t1/2

e−
(y−x)2

2ct

√
2πct

,

and

α∂x pt(0+, y) = (1 − α)∂x pt(0−, y), (2)

and if α , 1/2, pt(x, ·) is discontinuous at zero.

Remark 1
Note that the property (2) implies that if α , 1/2, then the density
function of skew diffusion cannot differentiable at zero with respect to x.



Parametrix method for diffusion



In this section, we introduce a parametrix method for one-dimensional
diffusion process:

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x.

A parametrix method is a “Taylor-like expansion" for the density of
diffusion process and is used to construct a fundamental solution for
parabolic type PDEs (Levi or Friedman [2])
For solution of SDE X, the infinitesimal generator L is given by

L f (x) =
a(x)

2
f ′′(x) + b(x) f ′(x), f ∈ C2



For simplicity, we assume that b, σ ∈ C∞
b

and σ is uniformly elliptic.
Then there exists the density function pt(x, ·) of Xt satisfying

∂t pt−s(x, y) = L∗pt−s(x, y), lim
t↓s

∫
R

f (x)pt−s(x, y)dx = f (y)

∂s pt−s(x, y) = −Lpt−s(x, y), lim
t↑s

∫
R

f (y)pt−s(x, y)dy = f (x).

Consider a “frozen process" (approximation process)

Xy
t = x + b(y)t + σ(y)Wt , ( or Xy

t = x + σ(t)Wt).

Let py
t (x, .) be a density function of Xy

t . Then p(x, y) := py
t (x, y), satisfies

∂s pt−s(x, y) = −Ly pt−s(x, y), lim
t↓s

∫
R

f (x)pt−s(x, y)dx = f (y),

where

Ly f (x) =
a(y)

2
f ′′(x) + b(y) f ′(x), ( or

a(y)
2

f ′′(x)).



Hence we have

pt(x, y) − pt(x, y) =

∫ t

0
ds∂s

∫
R

dzps(x, z)pt−s(z, y)

=

∫ t

0
ds

∫
R

dz
(
∂s ps(x, z)pt−s(z, y) + ps(x, z)∂s pt−s(z, y)

)
=

∫ t

0
ds

∫
R

dz
(
L∗ps(x, z)pt−s(z, y) − ps(x, z)Ly pt−s(z, y)

)
=

∫ t

0
ds

∫
R

dzps(x, z) (L − Ly) p̄t−s(z, y)︸                 ︷︷                 ︸
=:Φt−s(z,y)

=

∫ t

0
ds

∫
R

dzps(x, z)Φt−s(z, y)

=: p~ Φ(t, x, y).

This implies that

pt(x, y) = pt(x, y) + p~ Φ(t, x, y).

pt(x, y) is called the “parametrix" and this procedure is called the
“parametrix method".



By iterating the above procedure, we have the following “formal
expansion"

pt(x, y) = pt(x, y) + p~ Φ(t, x, y)

= pt(x, y) + p~ Φ(t, x, y) + p~ Φ~2(t, x, y)

“ = ”
∞∑

n=0

p~ Φ~n(t, x, y). (3)

Under the following Assumption, the above expansion holds.

Assumption 1
We assume that the drift coefficient b and diffusion coefficient σ satisfy
the following conditions:

(B) b and σ are bounded and measurable.

(UE) σ is a positive, bounded and uniformly elliptic function. In
particular, there exist positive constants a and a, such that

for any x ∈ R, a ≤ a(x) := σ2(x) ≤ a.

(η-H) a is η-Hölder continuous with η ∈ (0, 1]. That is, there
exists K > 0 such that supx,y

|a(x)−a(y)|
|x−y|η ≤ K.

Bally and Kohatsu-Higa [1] introduce parametrix expansion for semigroup



Moreover, under Assumption 1, the following Gaussian upper bound
holds:

pt(x, y) ≤
∞∑

n=0

|p~ Φ~n(t, x, y)| ≤
∞∑

n=0

Cn

Γ(1 + nη/2)
e−

(y−x)2

2ct

√
2πct

=
Ce−

(y−x)2

2ct

√
2πct

.

Note that it is well-known that if b is also Hölder continuous, we can prove
that pt(x, y) satisfies the following PDE

∂s pt−s(x, y) = −Lpt−s(x, y), lim
t↑s

∫
R

f (y)pt−s(x, y)dy = f (x).



Why Hölder continuous ?

A Hölder continuity of a = σ2 gives us integrability with respect to times
variables, that is

|a(x) − a(y)|
t

e−
|x−y|2

2t

√
2πt

≤
C

t1−η/2

|x − y|η

tη/2
e−

1
2
|x−y|2

2t

≤C

e−
1
2
|x−y|2

2t

√
2πt

≤
C

t1−η/2

e−
1
2
|x−y|2

2t

√
2πt

,

Hence, we have

∫ T

0
dt

∫
R

dy
|a(x) − a(y)|

t
e−

|x−y|2

2t

√
2πt

< ∞.

This is the reason, why the parametrix expansion convergences and
Gaussian upper bound holds.



Parametrix method for skew diffusion



Recall that for the parametrix method for diffusion process, a “frozen
process" Xy is defined by

Xy
t = x + b(y)t + σ(y)Wt , ( or Xy

t = x + σ(y)Wt).

For a skew diffusion process:

Xt(x) = x +

∫ t

0
b(Xs(x))ds +

∫ t

0
σ(Xs(x))dWs + (2α − 1)L0

t (X),

a “frozen process" Xy which is the unique strong solution to the equation

Xy
t = x + σ(y)Wt + (2α − 1)L0

t (Xy),

which is a slightly generalized version of “skew Brownian motion".



The solution of the equation

Yt = x + Wt + (2α − 1)L0
t (Y),

is called the “skew Brownian motion" (Harrison and Shepp [4]).
The density function of Yt , pYt (x, ·), can be given explicitly by using the
Gaussian density (Walsh, [10]):
if x ≥ 0

pYt (x, y) = (gt (y − x) + (2α − 1)gt (y + x)) 1(y ≥ 0)
+ 2(1 − α)gt (y − x) 1(y < 0),

and if x < 0

pYt (x, y) = (gt (y − x) + (1 − 2α)gt (y + x)) 1(y < 0)
+ 2αgt (y − x) 1(y ≥ 0).

Note that pYt (x, y) satisfies the following condition:

α∂x pYt (0+, y) = (1 − α)∂x pYt (0−, y)

and if α , 1/2, pYt (x, ·) is discontinuous at 0 because

pYt (x, 0+) = 2αgt(x) and pYt (x, 0−) = 2(1 − α)gt(x).



In the same way, the density py
t (x, ·)of Xy

t = x + σ(y)Wt + (2α − 1)L0
t (Xy)

is given explicitly. We denote pt(x, y) := py
t (x, y).

Then using the “semigroup approach", we can prove that

pt(x, y) :=
∞∑

n=0

p~ Φ~n(t, x, y)

is the density function of a skew diffusion Xt(x) and a Gaussian upper
bound holds. Moreover, pt(x, y) has the same property of pYt (x, y):

α∂x pt(0+, y) = (1 − α)∂x pt(0−, y).

and if α , 1/2, pt(x, ·) is discontinuous at 0.



Probabilistic representation to use Monte Carlo
simulation



Euler-Maruyama scheme
We first note that the Euler-Maruyama scheme for skew diffusion process
with out drift term.
Euler-Maruyama scheme:

X(n)
t = x +

∫ t

0
σ(X(n)

ηn(s)
)dWs + (2α − 1)L0

t (X(n)),

where ηn(s) := kT/n if s ∈ [kT/n, (k + 1)T/n).
· Assume that σ is bounded, uniformly elliptic and 1/2-Hölder continuous.
Then Using Yamada and Watanabe technique and Le Gall technique, we
can prove that there exists a positive constant C such that

E[|XT − X(n)
T
|] ≤

C
log n

.

Remark 2
Note that this convergence rate is the same one for the Euler-Maruyama
scheme for diffusion process. (Gyöngy and Rásonyi [3] or Ngo and
Taguchi [9]).

Hence if the diffusion coefficient is Hölder continuous, the E-M scheme
may has slow convergence rate.



The density function of Xt(x) has a probabilistic representation which can
be used for Monte Carlo simulation.

Theorem 2
Under the same condition as in Theorem 1 for the coefficients, we have
the following probabilistic representation: for any (x, y) ∈ R0 × R,

pT(x, y) = E[H(τ1, · · · , τRT , x, y)],

H(τ1, · · · , τRT , x, y) :=
pT−τRT

(x, Y∗,πτRT
(y))

1 − Fζ(T − τRT )

RT−1∏
i=0

θ̂τi+1−τi (Y
∗,π
τi+1

(y), Y∗,πτi
(y))

ζ(τi+1 − τi)
,

· for a partition π0 = (si ∧ T)n∈N, Y∗,π0 (y) is a Markov chain starting at y
and its transition probability is

P(Y∗,π0
sk

(y) ∈ dyk+1|Y
∗,π0
sk−1

(y) = yk) = ϕ
yk
sk−sk−1

(yk+1)dyk+1,

· θ̂t(x, y) := (L − Ly)pt(·, y)(x)/ϕy
t (x),

· a counting process Rt :=
∑∞

n=1 1(τn ≤ t), interval of jumps τn − τn−1
has the density function ζ which is a positive on (0, T],
· the random partition π = (τn ∧ T)n∈N, and Fζ(x) :=

∫ x
−∞

ζ(z)dz.



Therefore, for any function g with E[|g(XT(x))|] < ∞ and random variable
Z with density function f independent from W and R, we have

E[g(XT)] =

∫
R

g(y)pT(x, y)dy

=

∫
R

g(y)
f (y)

f (y)pT(x, y)dy

= E

[ g(Z)
f (Z)

pT(x, Z)
]

= E

[ g(Z)
f (Z)

H(τ1, · · · , τRT , x, Z)
]
.

Remark 3
Note that since the density of XT satisfies a Gaussian upper bound,
E[g(XT)] < ∞ holds for any |g(x)| ≤ CeC|x|.



Idea of proof
Recall that pt(x, y) =

∑∞
n=0 p~ Φ~n(t, x, y). By the definition of

convolution ~, we have

p~ Φ~n(t, x, y) =

∫ t0

0
dt1 · · ·

∫ tn−1

0
dtn

∫
R

n
dy1 · · · dyn

×

n−1∏
i=0

Φt i−t i+1 (yi+1, yi)ptn
(yn+1, yn).

Using the following lemma, we can prove the probabilistic representation
for the density of skew diffusion pt(x, y).

Lemma 1
Let R = (Rt)t≥0 be a counting process with ((τn)n∈N, ζ). Then for any
t > 0, n ∈ N and measurable function H : Rn → R,

E[1(Rt = n)H(τ1, · · · , τn)]

=

∫ t

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1H(s1, · · · , sn)(1 − Fζ(t − sn))

n−1∏
i=0

ζ(si+1 − si),

where Fζ(x) :=
∫ x
−∞

ζ(y)dy and s0 = 0.



Second moment problem

Let R be the Poisson process with intensity λ, i.e., ζ(x) = λe−λt Then we
have

H(τ1, · · · , τRT , x, y) := eλTλ−RT pT−τRT
(x, Y∗,πτRT

(y))
RT−1∏
i=0

θ̂τi+1−τi (Y
∗,π
τi+1

(y), Y∗,πτi
(y)).

Note that

|θ̂t(x, y)| ≤
C

t1−η/2
gt

( y − x
c

)
.

Hence we have “formally"

E[H2(τ1, · · · , τT , y, x)]

≤

∞∑
n=0

eλTλ−n
∫ t

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1

n−1∏
i=0

C2

(si+1 − si)2−η
g2

t0

( y − x
c

)
“ = ”∞.



Finite moment scheme

To reduce the variance of our probabilistic representation, we define the
function ζ(t) := A

tβ 1(0,2T](t) where A := (1 − β)/(2T)1−β and β ∈ (0, 1).
Then for any p ≥ 2,

E[Hp(τ1, · · · , τT , y, x)]

≤

∞∑
n=0

∫ t0

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1

Cn
p gp

t0

( y−x
c

)
∏n−1

i=0 (si+1 − si)p−pη/2ζ p−1(si+1 − si)

≤

∞∑
n=0

∫ t0

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1

Cn
p gp

t0

( y−x
c

)
∏n−1

i=0 (si+1 − si)(p−pη/2)−(p−1)β
.

By taking β ∈ (p(1 − η/2) − 1)/(p − 1), 1), the above series is finite.
Note that if β is small,

E[τn − τn−1] =
2T(1 − β)

2 − β
∼ T.

⇒This implies that by choosing small β, we can control simulation time.



Application to Mathematical Finance

Note that our Finite moment numerical simulation scheme can be useful
to compute a “Greeks" in math finance. Indeed, for any x ∈ R0, we have

∂xE[g(XT(x))] =

∫
R

g(y)∂x pT(x, y)dy

= E

[ g(Z)
f (Z)

∂xH(τ1, · · · , τRT , x, Z)
]
,

where Z ∼ f and

∂xH(τ1, · · · , τRT , x, y) =

∂x pT−τRT
(x, Y∗,πτRT

(y))

1 − Fζ(T − τRT )

RT−1∏
i=0

θ̂τi+1−τi (Y
∗,π
τi+1

(y), Y∗,πτi
(y))

ζ(τi+1 − τi)
.



Future works

Numerical scheme based on the “parametrix method" for SDE with two
reflections:

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs + β1La1

t (X) + β2La2
t (X)

and more generally, for some measure ν on R,

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs +

∫
R

Ly
t (X)ν(dy).
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