Parametrix method for skew diffusions

Dai Taguchi

Ritsumeikan University joint work with Arturo Kohatsu-Higa (Ritsumeikan University) Jie Zhong (University of Central Florida)

Stochastic Analysis and Related Topics 2015 Osaka University, Oct. 22, 2015

Outline

Skew diffusion

Parametrix method for diffusion

Parametrix method for skew diffusion

Probabilistic representation

Skew diffusion

• A skew diffusion is the unique solution of the following one-dimensional stochastic differential equation with symmetric local time:

$$X_t = x + \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dW_s + (2\alpha - 1) L_t^0(X), \quad (1)$$

where $t \in [0, T]$ and $|2\alpha - 1| \in (0, 1)$.

• $W = (W_t)_{0 \le t \le T}$ is a one-dimensional standard Brownian motion.

 $\cdot L^0(X) = (L^0_t(X))_{0 \le t \le T}$ is a symmetric local time of X at the origin, that is

$$L^0_t(X) := \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \mathbf{1}_{[-\varepsilon,\varepsilon]}(X_s) d\langle X \rangle_s.$$

- If $\alpha = 1/2$, then a solution to the equation (1) is a diffusion process.
- If $\alpha = 1$ or $\alpha = 0$, then a solution to the equation (1) is reflected stochastic differential equation.
- · We want to prove that
 - (i) Existence of the density of a skew diffusion.
 - (ii) The density of a skew diffusion satisfies a Gaussian upper bound.
- We want to calculate an expectation $\mathbb{E}[g(X_T)]$ for some function g.
- Application: Physics, PDE and SDEs with dis-continuous coefficients.

Relation to SDEs with dis-continuous coefficients Define

$$s_{\alpha}(x) := (1-\alpha)x\mathbf{1}(x \ge 0) + \alpha x\mathbf{1}(x < 0).$$

By using the symmetric Itô-Tanaka formula, we have

$$X_t = x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + (2\alpha - 1)L_t^0(X)$$
$$s_\alpha \downarrow \uparrow s_\alpha^{-1}$$
$$Z_t := s_\alpha(X_t) = s_\alpha(x) + \int_0^t \mu(Z_s)ds + \int_0^t \rho(Z_s)dW_s,$$

where

$$\begin{split} \mu(z) &:= (1-\alpha)b\left(\frac{z}{1-\alpha}\right)\mathbf{1}(z>0) + \alpha b\left(\frac{z}{\alpha}\right)\mathbf{1}(z<0) + \frac{b(0)}{2}\mathbf{1}(z=0),\\ \rho(z) &:= (1-\alpha)\sigma\left(\frac{z}{1-\alpha}\right)\mathbf{1}(z>0) + \alpha\sigma\left(\frac{z}{\alpha}\right)\mathbf{1}(z<0) + \frac{\sigma(0)}{2}\mathbf{1}(z=0). \end{split}$$

Weak solution: Krylov [6], Strong solution: Le Gall [7], Nakao [8].

Main result

Let $\mathbb{R}_0 := \mathbb{R} \setminus \{0\}$. Our first main result on this talk is the following.

Theorem 1

Assume that

(i) σ is a positive, bounded and uniformly elliptic function. In particular, there exist positive constants \overline{a} and a, such that for any $x \in \mathbb{R}$,

$$\underline{a} \le a(x) := \sigma^2(x) \le \overline{a}$$
.

(ii) *b* is bounded measurable and *a* is η -Hölder continuous with $\eta \in (0, 1]$, *i.e.*, there exist positive constant *K* such that

$$\sup_{x\in\mathbb{R}}|b(x)|+\sup_{x,y\in\mathbb{R},x\neq y}\frac{|a(x)-a(y)|}{|x-y|^{\eta}}\leq K.$$

Then for any $(t, x) \in (0, T] \times \mathbb{R}_0$, there exists the density function of $X_t(x)$, $p_t(x, \cdot)$, which satisfies the Gaussian upper bound, i.e., there exist positive constants *C* and *c* such that, for any $(t, x, y) \in (0, T] \times \mathbb{R}_0 \times \mathbb{R}$,

$$p_t(x,y) \leq \frac{Ce^{-\frac{(y-x)^2}{2ct}}}{\sqrt{2\pi ct}}.$$

Main result

Moreover, the density $p_t(x, \cdot)$ is a differentiable with respect to an initial value $x \in \mathbb{R}_0 = \mathbb{R} \setminus \{0\}$ and satisfies the following conditions:

$$\partial_x p_t(x,y) \leq \frac{C}{t^{1/2}} \frac{e^{-\frac{(y-x)^2}{2ct}}}{\sqrt{2\pi ct}},$$

and

$$\alpha \partial_x p_t(\mathbf{0+}, y) = (1-\alpha) \partial_x p_t(\mathbf{0-}, y), \tag{2}$$

and if $\alpha \neq 1/2$, $p_t(x, \cdot)$ is discontinuous at zero.

Remark 1

Note that the property (2) implies that if $\alpha \neq 1/2$, then the density function of skew diffusion cannot differentiable at zero with respect to x.

Parametrix method for diffusion

In this section, we introduce a parametrix method for one-dimensional diffusion process:

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, X_0 = x.$$

A parametrix method is a "Taylor-like expansion" for the density of diffusion process and is used to construct a fundamental solution for parabolic type PDEs (Levi or Friedman [2]) For solution of SDE X, the infinitesimal generator L is given by

$$Lf(x) = \frac{a(x)}{2}f''(x) + b(x)f'(x), \ f \in C^{2}$$

For simplicity, we assume that $b, \sigma \in C_b^{\infty}$ and σ is uniformly elliptic. Then there exists the density function $p_t(x, \cdot)$ of X_t satisfying

$$\partial_t p_{t-s}(x,y) = L^* p_{t-s}(x,y), \lim_{t \downarrow s} \int_{\mathbb{R}} f(x) p_{t-s}(x,y) dx = f(y)$$

$$\partial_s p_{t-s}(x,y) = -L p_{t-s}(x,y), \lim_{t \uparrow s} \int_{\mathbb{R}} f(y) p_{t-s}(x,y) dy = f(x).$$

Consider a "frozen process" (approximation process)

$$X_t^y = x + b(y)t + \sigma(y)W_t, \text{ (or } X_t^y = x + \sigma(t)W_t).$$

Let $p_t^y(x, .)$ be a density function of X_t^y . Then $\overline{p}(x, y) := p_t^y(x, y)$, satisfies

$$\partial_s \overline{p}_{t-s}(x,y) = -L^y \overline{p}_{t-s}(x,y), \lim_{t \downarrow s} \int_{\mathbb{R}} f(x) \overline{p}_{t-s}(x,y) dx = f(y),$$

where

$$L^{y}f(x) = \frac{a(y)}{2}f''(x) + b(y)f'(x), \text{ (or } \frac{a(y)}{2}f''(x)).$$

Hence we have

$$p_{t}(x,y) - \overline{p}_{t}(x,y) = \int_{0}^{t} ds \partial_{s} \int_{\mathbb{R}} dz p_{s}(x,z) \overline{p}_{t-s}(z,y)$$

$$= \int_{0}^{t} ds \int_{\mathbb{R}} dz \left(\partial_{s} p_{s}(x,z) \overline{p}_{t-s}(z,y) + p_{s}(x,z) \partial_{s} \overline{p}_{t-s}(z,y) \right)$$

$$= \int_{0}^{t} ds \int_{\mathbb{R}} dz \left(L^{*} p_{s}(x,z) \overline{p}_{t-s}(z,y) - p_{s}(x,z) L^{y} \overline{p}_{t-s}(z,y) \right)$$

$$= \int_{0}^{t} ds \int_{\mathbb{R}} dz p_{s}(x,z) \underbrace{(L-L^{y}) \overline{p}_{t-s}(z,y)}_{=:\Phi_{t-s}(z,y)}$$

$$= \int_{0}^{t} ds \int_{\mathbb{R}} dz p_{s}(x,z) \Phi_{t-s}(z,y)$$

$$=: p \circledast \Phi(t,x,y).$$

This implies that

$$p_t(x,y) = \overline{p}_t(x,y) + p \circledast \Phi(t,x,y).$$

 $\overline{p}_t(x, y)$ is called the "parametrix" and this procedure is called the "parametrix method".

By iterating the above procedure, we have the following "formal expansion"

$$p_{t}(x,y) = \overline{p}_{t}(x,y) + p \circledast \Phi(t,x,y)$$

$$= \overline{p}_{t}(x,y) + \overline{p} \circledast \Phi(t,x,y) + p \circledast \Phi^{\circledast 2}(t,x,y)$$

$$`` = "\sum_{n=0}^{\infty} \overline{p} \circledast \Phi^{\circledast n}(t,x,y).$$
(3)

Under the following Assumption, the above expansion holds.

Assumption 1

We assume that the drift coefficient b and diffusion coefficient σ satisfy the following conditions:

- (B) b and σ are bounded and measurable.
- (UE) σ is a positive, bounded and uniformly elliptic function. In particular, there exist positive constants \overline{a} and \underline{a} , such that for any $x \in \mathbb{R}$, $\underline{a} \leq a(x) := \sigma^2(x) \leq \overline{a}$.
- $(\eta$ -H) $a \text{ is } \eta$ -Hölder continuous with $\eta \in (0, 1]$. That is, there exists K > 0 such that $\sup_{x \neq y} \frac{|a(x) a(y)|}{|x y|^{\eta}} \leq K$.

Bally and Kohatsu-Higa [1] introduce parametrix expansion for semigroup

Moreover, under Assumption 1, the following Gaussian upper bound holds:

$$p_t(x,y) \leq \sum_{n=0}^{\infty} |\overline{p} \circledast \Phi^{\circledast n}(t,x,y)| \leq \sum_{n=0}^{\infty} \frac{C^n}{\Gamma(1+n\eta/2)} \frac{e^{-\frac{(y-x)^2}{2ct}}}{\sqrt{2\pi ct}} = \frac{Ce^{-\frac{(y-x)^2}{2ct}}}{\sqrt{2\pi ct}}.$$

•

•

Note that it is well-known that if *b* is also Hölder continuous, we can prove that $p_t(x, y)$ satisfies the following PDE

$$\partial_s p_{t-s}(x,y) = -Lp_{t-s}(x,y), \lim_{t\uparrow s} \int_{\mathbb{R}} f(y)p_{t-s}(x,y)dy = f(x).$$

Why Hölder continuous ?

A Hölder continuity of $a = \sigma^2$ gives us integrability with respect to times variables, that is

$$\frac{|a(x)-a(y)|}{t}\frac{e^{-\frac{|x-y|^2}{2t}}}{\sqrt{2\pi t}} \leq \frac{C}{t^{1-\eta/2}} \frac{|x-y|^{\eta}}{t^{\eta/2}}e^{-\frac{1}{2}\frac{|x-y|^2}{2t}} \frac{e^{-\frac{1}{2}\frac{|x-y|^2}{2t}}}{\sqrt{2\pi t}} \leq \frac{C}{t^{1-\eta/2}}\frac{e^{-\frac{1}{2}\frac{|x-y|^2}{2t}}}{\sqrt{2\pi t}},$$

Hence, we have

$$\int_0^T dt \int_{\mathbb{R}} dy \frac{|a(x)-a(y)|}{t} \frac{e^{-\frac{|x-y|^2}{2t}}}{\sqrt{2\pi t}} < \infty.$$

This is the reason, why the parametrix expansion convergences and Gaussian upper bound holds.

Parametrix method for skew diffusion

Recall that for the parametrix method for diffusion process, a "frozen process" X^{y} is defined by

$$X_t^y = x + b(y)t + \sigma(y)W_t, \text{ (or } X_t^y = x + \sigma(y)W_t).$$

For a skew diffusion process:

$$X_t(x) = x + \int_0^t b(X_s(x))ds + \int_0^t \sigma(X_s(x))dW_s + (2\alpha - 1)L_t^0(X),$$

a "frozen process" X^{y} which is the unique strong solution to the equation

$$X_{t}^{y} = x + \sigma(y)W_{t} + (2\alpha - 1)L_{t}^{0}(X^{y}),$$

which is a slightly generalized version of "skew Brownian motion".

The solution of the equation

$$Y_t = x + W_t + (2\alpha - 1)L_t^0(Y),$$

is called the "skew Brownian motion" (Harrison and Shepp [4]). The density function of Y_t , $p_{Y_t}(x, \cdot)$, can be given explicitly by using the Gaussian density (Walsh, [10]): if x > 0

$$p_{Y_t}(x, y) = (g_t (y - x) + (2\alpha - 1)g_t (y + x)) \mathbf{1}(y \ge 0) + 2(1 - \alpha)g_t (y - x) \mathbf{1}(y < 0),$$

and if x < 0

$$p_{Y_t}(x, y) = (g_t (y - x) + (1 - 2\alpha)g_t (y + x)) \mathbf{1}(y < 0) + 2\alpha g_t (y - x) \mathbf{1}(y \ge 0).$$

Note that $p_{Y_t}(x, y)$ satisfies the following condition:

$$\alpha \partial_x p_{Y_t}(\mathbf{0+},y) = (1-\alpha) \partial_x p_{Y_t}(\mathbf{0-},y)$$

and if $\alpha \neq 1/2$, $p_{Y_t}(x, \cdot)$ is discontinuous at 0 because

$$p_{Y_t}(x, 0+) = 2\alpha g_t(x)$$
 and $p_{Y_t}(x, 0-) = 2(1-\alpha)g_t(x)$.

In the same way, the density $p_t^y(x, \cdot)$ of $X_t^y = x + \sigma(y)W_t + (2\alpha - 1)L_t^0(X^y)$ is given explicitly. We denote $\overline{p}_t(x, y) := p_t^y(x, y)$. Then using the "semigroup approach", we can prove that

$$p_t(x,y):=\sum_{n=0}^{\infty}\overline{p}\circledast \Phi^{\circledast n}(t,x,y)$$

is the density function of a skew diffusion $X_t(x)$ and a Gaussian upper bound holds. Moreover, $p_t(x, y)$ has the same property of $p_{Y_t}(x, y)$:

$$\alpha \partial_x p_t(0+,y) = (1-\alpha) \partial_x p_t(0-,y).$$

and if $\alpha \neq 1/2$, $p_t(x, \cdot)$ is discontinuous at 0.

Probabilistic representation to use Monte Carlo simulation

Euler-Maruyama scheme

We first note that the Euler-Maruyama scheme for skew diffusion process with out drift term.

Euler-Maruyama scheme:

$$X_t^{(n)} = x + \int_0^t \sigma(X_{\eta_n(s)}^{(n)}) dW_s + (2\alpha - 1)L_t^0(X^{(n)}),$$

where $\eta_n(s) := kT/n$ if $s \in [kT/n, (k+1)T/n)$.

• Assume that σ is bounded, uniformly elliptic and 1/2-Hölder continuous. Then Using Yamada and Watanabe technique and Le Gall technique, we can prove that there exists a positive constant C such that

$$\mathbb{E}[|X_T - X_T^{(n)}|] \le \frac{C}{\log n}.$$

Remark 2

Note that this convergence rate is the same one for the Euler-Maruyama scheme for diffusion process. (Gyöngy and Rásonyi [3] or Ngo and Taguchi [9]).

Hence if the diffusion coefficient is Hölder continuous, the E-M scheme may has slow convergence rate.

The density function of $X_t(x)$ has a probabilistic representation which can be used for Monte Carlo simulation.

Theorem 2

Under the same condition as in Theorem 1 for the coefficients, we have the following probabilistic representation: for any $(x, y) \in \mathbb{R}_0 \times \mathbb{R}$,

$$p_T(x,y) = \mathbb{E}[H(\tau_1,\cdots,\tau_{R_T},x,y)],$$

$$H(\tau_1,\cdots,\tau_{R_T},x,y) := \frac{\overline{p}_{T-\tau_{R_T}}(x,Y_{\tau_{R_T}}^{*,\pi}(y))}{1-F_{\zeta}(T-\tau_{R_T})} \prod_{i=0}^{R_T-1} \frac{\hat{\theta}_{\tau_{i+1}-\tau_i}(Y_{\tau_{i+1}}^{*,\pi}(y),Y_{\tau_i}^{*,\pi}(y))}{\zeta(\tau_{i+1}-\tau_i)},$$

• for a partition $\pi_0 = (s_i \wedge T)_{n \in \mathbb{N}}$, $Y^{*,\pi_0}(y)$ is a Markov chain starting at y and its transition probability is

$$\mathbb{P}(Y_{s_k}^{*,\pi_0}(y) \in dy_{k+1} | Y_{s_{k-1}}^{*,\pi_0}(y) = y_k) = \varphi_{s_k-s_{k-1}}^{y_k}(y_{k+1}) dy_{k+1},$$

 $\cdot \hat{\theta}_t(x,y) := (L - L^y) \overline{p}_t(\cdot, y)(x) / \varphi_t^y(x),$

• a counting process $R_t := \sum_{n=1}^{\infty} \mathbf{1}(\tau_n \leq t)$, interval of jumps $\tau_n - \tau_{n-1}$ has the density function ζ which is a positive on (0, T],

• the random partition $\pi = (\tau_n \wedge T)_{n \in \mathbb{N}}$, and $F_{\zeta}(x) := \int_{-\infty}^x \zeta(z) dz$.

Therefore, for any function g with $\mathbb{E}[|g(X_T(x))|] < \infty$ and random variable Z with density function f independent from W and R, we have

$$\mathbb{E}[g(X_T)] = \int_{\mathbb{R}} g(y) p_T(x, y) dy$$

= $\int_{\mathbb{R}} \frac{g(y)}{f(y)} f(y) p_T(x, y) dy$
= $\mathbb{E}\left[\frac{g(Z)}{f(Z)} p_T(x, Z)\right]$
= $\mathbb{E}\left[\frac{g(Z)}{f(Z)} H(\tau_1, \cdots, \tau_{R_T}, x, Z)\right].$

Remark 3

Note that since the density of X_T satisfies a Gaussian upper bound, $\mathbb{E}[g(X_T)] < \infty$ holds for any $|g(x)| \le Ce^{C|x|}$.

Idea of proof

Recall that $p_t(x, y) = \sum_{n=0}^{\infty} \overline{p} \circledast \Phi^{\circledast n}(t, x, y)$. By the definition of convolution \circledast , we have

$$\overline{p} \circledast \Phi^{\circledast n}(t, x, y) = \int_0^{t_0} dt_1 \cdots \int_0^{t_{n-1}} dt_n \int_{\mathbb{R}^n} dy_1 \cdots dy_n$$
$$\times \prod_{i=0}^{n-1} \Phi_{t_i - t_{i+1}}(y_{i+1}, y_i) \overline{p}_{t_n}(y_{n+1}, y_n).$$

Using the following lemma, we can prove the probabilistic representation for the density of skew diffusion $p_t(x, y)$.

Lemma 1

Let $R = (R_t)_{t \ge 0}$ be a counting process with $((\tau_n)_{n \in \mathbb{N}}, \zeta)$. Then for any $t > 0, n \in \mathbb{N}$ and measurable function $H : \mathbb{R}^n \to \mathbb{R}$,

$$\mathbb{E}[\mathbf{1}(R_t = n)H(\tau_1, \cdots, \tau_n)] \\ = \int_0^t ds_n \int_0^{s_n} ds_{n-1} \cdots \int_0^{s_2} ds_1 H(s_1, \cdots, s_n)(1 - F_{\zeta}(t - s_n)) \prod_{i=0}^{n-1} \zeta(s_{i+1} - s_i),$$

where
$$F_{\zeta}(x) := \int_{-\infty}^{x} \zeta(y) dy$$
 and $s_0 = 0$.

Second moment problem

Let **R** be the Poisson process with intensity λ , i.e., $\zeta(x) = \lambda e^{-\lambda t}$ Then we have

$$H(\tau_1, \cdots, \tau_{R_T}, x, y) := e^{\lambda T} \lambda^{-R_T} \overline{p}_{T-\tau_{R_T}}(x, Y^{*,\pi}_{\tau_{R_T}}(y)) \prod_{i=0}^{R_T-1} \hat{\theta}_{\tau_{i+1}-\tau_i}(Y^{*,\pi}_{\tau_{i+1}}(y), Y^{*,\pi}_{\tau_i}(y)).$$

Note that

$$|\hat{\theta}_t(x,y)| \leq \frac{C}{t^{1-\eta/2}} g_t\left(\frac{y-x}{c}\right).$$

Hence we have "formally"

$$\mathbb{E}[H^{2}(\tau_{1}, \cdots, \tau_{T}, y, x)]$$

$$\leq \sum_{n=0}^{\infty} e^{\lambda T} \lambda^{-n} \int_{0}^{t} ds_{n} \int_{0}^{s_{n}} ds_{n-1} \cdots \int_{0}^{s_{2}} ds_{1} \prod_{i=0}^{n-1} \frac{C^{2}}{(s_{i+1} - s_{i})^{2-\eta}} g_{t_{0}}^{2} \left(\frac{y - x}{c}\right)$$

$$= \infty.$$

Finite moment scheme

To reduce the variance of our probabilistic representation, we define the function $\zeta(t) := \frac{A}{t^{\beta}} \mathbf{1}_{(0,2T]}(t)$ where $A := (1 - \beta)/(2T)^{1-\beta}$ and $\beta \in (0, 1)$. Then for any $p \ge 2$,

$$\begin{split} \mathbb{E}[H^{p}(\tau_{1},\cdots,\tau_{T},y,x)] \\ &\leq \sum_{n=0}^{\infty} \int_{0}^{t_{0}} ds_{n} \int_{0}^{s_{n}} ds_{n-1} \cdots \int_{0}^{s_{2}} ds_{1} \frac{C_{p}^{n} g_{t_{0}}^{p} \left(\frac{y-x}{c}\right)}{\prod_{i=0}^{n-1} (s_{i+1}-s_{i})^{p-p\eta/2} \zeta^{p-1} (s_{i+1}-s_{i})} \\ &\leq \sum_{n=0}^{\infty} \int_{0}^{t_{0}} ds_{n} \int_{0}^{s_{n}} ds_{n-1} \cdots \int_{0}^{s_{2}} ds_{1} \frac{C_{p}^{n} g_{t_{0}}^{p} \left(\frac{y-x}{c}\right)}{\prod_{i=0}^{n-1} (s_{i+1}-s_{i})^{(p-p\eta/2)-(p-1)\beta}}. \end{split}$$

By taking $\beta \in (p(1 - \eta/2) - 1)/(p - 1)$, the above series is finite. Note that if β is small,

$$\mathbb{E}[\tau_n-\tau_{n-1}]=\frac{2T(1-\beta)}{2-\beta}\sim T.$$

 \Rightarrow This implies that by choosing small β , we can control simulation time.

Application to Mathematical Finance

Note that our Finite moment numerical simulation scheme can be useful to compute a "Greeks" in math finance. Indeed, for any $x \in \mathbb{R}_0$, we have

$$\begin{aligned} \partial_x \mathbb{E}[g(X_T(x))] &= \int_{\mathbb{R}} g(y) \partial_x p_T(x, y) dy \\ &= \mathbb{E}\left[\frac{g(Z)}{f(Z)} \partial_x H(\tau_1, \cdots, \tau_{R_T}, x, Z)\right], \end{aligned}$$

where $Z \sim f$ and

$$\partial_{x}H(\tau_{1},\cdots,\tau_{R_{T}},x,y)=\frac{\partial_{x}\overline{p}_{T-\tau_{R_{T}}}(x,Y_{\tau_{R_{T}}}^{*,\pi}(y))}{1-F_{\zeta}(T-\tau_{R_{T}})}\prod_{i=0}^{R_{T}-1}\frac{\hat{\theta}_{\tau_{i+1}-\tau_{i}}(Y_{\tau_{i+1}}^{*,\pi}(y),Y_{\tau_{i}}^{*,\pi}(y))}{\zeta(\tau_{i+1}-\tau_{i})}$$

Future works

Numerical scheme based on the "parametrix method" for SDE with two reflections:

$$X_{t} = x + \int_{0}^{t} b(X_{s})ds + \int_{0}^{t} \sigma(X_{s})dW_{s} + \beta_{1}L_{t}^{a_{1}}(X) + \beta_{2}L_{t}^{a_{2}}(X)$$

and more generally, for some measure ν on \mathbb{R} ,

$$X_t = x + \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dW_s + \int_{\mathbb{R}} L_t^y(X) \nu(dy).$$

References

- [1] Bally, V. and Kohatsu-Higa, A. : A probabilistic interpretation of the parametrix method. Ann. Appl. Probab., to appear.
- [2] Friedman, A. : Partial Differential Equations of Parabolic Type. Dover Publications, Inc., (1964)
- [3] Gyöngy, I. and Rásonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. *Stochastic. Process. Appl.* 121, 2189–2200 (2011).
- [4] Harrison, J.M. and Shepp, L.A. On skew Brownian motion The Annals of Probability 1981, Vol. 9, No. 2, 309-313
- [5] Kohatsu-Higa, A., Taguchi, D. and Zhong, J. Parametrix method for skew diffusions. Preprint, 2015.
- [6] Krylov, N. V. : On Itô stochastic integral equations, Theory of Probab. Appl., 14, No.2, 330-336 (1969)
- [7] Le Gall, J. F.: One-dimensional stochastic differential equations involving the local times of the unknown process. Laboratoire de Probabilités ; Tour 56, 4 Place Jussieu.
 F. 75230 Paris Cédex 05.
- [8] Nakao, S.: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 9 (1972), 513-518.
- [9] Ngo, H-L., and Taguchi, D.: Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients. To appear in *Math. Comp.*.
- [10] Walsh, J.B.: A diffusion with discontinuous local time. In Temps locaux, volume 52-53, page 37-45, Société Mathématique de France, (1978).