Convergence of Brownian motions on RCD spaces

Kohei Suzuki (Kyoto Univeristy)

1 Introduction & Result

In this talk, we consider the following problem:

(Q) Does the weak convergence of Brownian motions follow only from geometrical convergence of the underlying spaces (or, vice versa)?

As a main result in this talk, we show that the weak convergence of the laws of Brownian motions is **equivalent** to the measured Gromov–Hausdorff (mGH) convergence of the underlying metric measure spaces under the following assumption:

Assumption 1.1 Let N, K and D be constants with $1 < N < \infty$, $K \in \mathbb{R}$ and $0 < D < \infty$. For $n \in \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$, let $\mathcal{X}_n = (X_n, d_n, m_n)$ be a metric measure space satisfying the $\operatorname{RCD}^*(K, N)$ condition with $\operatorname{Diam}(X_n) \leq D$ and $m_n(X_n) = 1$.

Under Assumption 1.1, it is known that there exists a conservative Hunt process on \mathcal{X}_n associated with the Cheeger energy and unique in all starting points in \mathcal{X}_n . We denote it by $(\{\mathbb{P}_n^x\}_{x\in X_n}, \{B_t^n\}_{t\geq 0})$, called *the Brownian motion on* \mathcal{X}_n . We state our main theorem precisely:

Theorem 1.2 Suppose that Assumption 1.1 holds. Then the following statements (i) and (ii) are equivalent:

(i) (mGH-convergence of the underlying spaces)

 \mathcal{X}_n converges to \mathcal{X}_∞ in the measured Gromov-Hausdorff sense.

(ii) (Weak convergence of the laws of Brownian motions)

There exist

$$\begin{cases} a \text{ compact metric space } (X,d) \\ isometric \text{ embeddings } \iota_n : X_n \to X \ (n \in \overline{\mathbb{N}}) \\ x_n \in X_n \ (n \in \overline{\mathbb{N}}) \end{cases}$$

such that

 $\iota_n(B^n_{\cdot})_{\#}\mathbb{P}^{x_n}_n \to \iota_\infty(B^\infty_{\cdot})_{\#}\mathbb{P}^{x_\infty}_{\infty} \quad weakly \quad in \ \mathcal{P}(C([0,\infty);X)).$

The subscript # means the operation of the push-forward of measures.

 $\mathbf{RCD}^*(\mathbf{K}, \mathbf{N})$ (Riemannian Curvature-Dimension) spaces, introduced by Erbar–Kuwada–Sturm [2], are metric measure spaces satisfying a generalized notion of "**Ricci** $\geq \mathbf{K}$, **dim** $\leq \mathbf{N}$ ", which include several important classes of non-smooth spaces. For example, measured Gromov–Hausdorff (**mGH**) **limit spaces** of complete Riemannian manifolds with Ricci $\geq K$, dim = N, or **Alexandrov spaces** with Curv $\geq K/(N-1)$, dim = N are included in RCD*(K, N) spaces.

Remark 1.3 We give comments to several related works.

(i) In [4], Ogura studied the weak convergence of the laws of the Brownian motions on Riemannian manifolds by a different approach from this talk. He push-forwarded all Brownian motions not to the ambient space X, but to the limit space M_∞ with respect to approximation maps f_n: M_n → M_∞ of the Kasue–Kumura convergence with certain time-discretization of Brownian motions.

More precisely, he assumed uniform upper bounds for heat kernels, and the Kasue–Kumura spectral convergence ([3]) of the underlying manifolds M_n . He push-forward each Brownian motions on M_n to the Kasue–Kumura spectral limit space M_{∞} with respect to ε_n -isometry $f_n: M_n \to M_{\infty}$, and show the convergence in law on the càdlàg space of the push-forwarded and time-discretized Brownian motions on M_{∞} .

(ii) In [1], Albeverio and Kusuoka studied diffusion processes associated with SDEs on thin tubes in \mathbb{R}^d shrinking to one-dimensional spider graphs. They studied the weak convergence of these diffusions to onedimensional diffusions on the limit graphs. Their setting does not satisfy the RCD^{*}(K, N) condition because Ricci curvatures are not bounded below at points of conjunctions in spider graphs.

References

- Albeverio, S. and Kusuoka, S. (2012). Diffusion processes in thin tubes and theier limits on graphs. Ann. Probab. 40(5). 2131–2167.
- [2] Erbar, M., Kuwada, K. and Sturm, K.-Th. On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces. to appear in Invent. Math. Preprint Available at: arXiv:1303.4382v2.
- [3] Kasue, A. and Kumura, H. (1994). Spectral convergence of Riemannian manifolds. Tôhoku Math. J. 46 147–179.
- [4] Ogura, Y. (2001). Weak convergence of laws of stochastic processes on Riemannian manifolds. Probab. Theory Related Fields 119 529–557.