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1 Introduction

In this talk, we will show some results on the density functions related to discrete time maximum of some
one-dimensional diffusion processes. That is defined by Mn

T = max{Xt1 , · · · , Xtn} for a fixed time interval
[0, T ] and a time partition ∆n : 0 = t0 < t1 < · · · < tn−1 < tn < tn+1 = T for n ≥ 2, where {Xt, t ∈ [0,∞)}
denotes a one-dimensional diffusion process.

Firstly, we shall deal with the following one-dimensional stochastic differential equation (SDE),

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0,∞) (1)

where x0 ∈ R, b, σ : [0,∞) × R → R are measurable functions and {Wt, t ∈ [0,∞)} is a one-dimensional
standard Brownian motion.

The first goal of this talk is to prove an integration by parts (IBP) formula for the random vector (Mn
T , XT ).

That is the formula of the form E[∂βφ(M
n
T , XT )] = E[φ(Mn

T , XT )Hβ ] for a smooth function φ, where Hβ is a
certain random variable and E[·] denotes the expectation with respect to a certain probability measure. Then,
we will apply the IBP formula to study on the density function of (Mn

T , XT ).
The second goal is to obtain asymptotic behaviors of the density functions ofMn

T and (Mn
T , XT ) for Gaussian

processes. For this purpose, we shall consider the following multiple integral,

I(θ) :=

∫
R

f(x1, · · · , xn)e−θ
2ϕ(x1,··· ,xn)+k(θ)ψ(x1,··· ,xn)dx1 · · · dxn, (2)

where R =
∏n
i=1(−∞, di], di ∈ R for 1 ≤ i ≤ n and f, ϕ, ψ : Rn → R are measurable functions, then obtain

the asymptotic behavior of I(θ) as θ → ∞ by using the Laplace’s method. The result will be used to obtain
the asymptotic behaviors of the density functions. The process satisfying (1) where b, σ do not depend on the
space parameter, Brownian Bridge and Ornstein-Uhlenbeck process will be considered as the examples.

2 Main results

For b, σ of (1), we assume the following,
Assumption (A)

(A1) For t ∈ [0,∞), b(t, ·), σ(t, ·) ∈ C∞
b (R;R). Furthermore, all constants which bound the derivatives of

b(t, ·) and σ(t, ·) do not depend on t. In particular, let c(σ) be a constant which bounds |σ(t, x)|.

(A2) There exists c > 0 such that

|σ(t, x)| ≥ c

holds, for any x ∈ R and t ∈ [0,∞).

Theorem 1. Assume (A). Let G ∈ D∞. Then, for any multi index β ∈ {1, 2}k, k ≥ 1, there exists Hβ(G) ∈
D∞ such that

EP [∂βφ(M
n
T , XT )G] = EP [φ(Mn

T , XT )Hβ(G)] (3)

holds for arbitrary φ ∈ C∞
b (R2;R).
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For f, ϕ, ψ, k(θ) of (2), we assume the following,
Assumption (B)

(B1) ϕ ∈ C2(Rn;R) and ϕ attains its global minimum at a point x∗ = (x∗1, · · · , x∗n) ∈ R, in particular, we
assume that x∗j1 = dj1 , · · · , x∗jm = djm for 1 ≤ j1 < · · · < jm ≤ n, 0 ≤ m ≤ n and x∗i < di for other
1 ≤ i ≤ n.

(B2) There exist ai > 0 and bi ∈ R, 1 ≤ i ≤ n such that ϕ(x1, · · · , xn) ≥
∑n
i=1 aix

2
i +

∑n
i=1 bixi holds.

(B3) ψ ∈ C1(Rn;R) and there exist ci ≥ 0, 1 ≤ i ≤ n such that ψ(x1, · · · , xn) ≤
∑n
i=1 ci|xi| holds.

(B4) f ∈ C1(Rn;R) and there exist K1 > 0 and αi ≥ 0, 1 ≤ i ≤ n such that |f(x1, · · · , xn)| ≤ K1e
∑n

i=1 αix
2
i

holds. Moreover, we assume that f(x∗) ̸= 0.

(B5) k(θ) ≥ 0 and k(θ) = o((log(θ))2) hold.

Since Hessϕ(x∗) is a positive definite matrix, we may use the orthogonal matrix Q and the diagonal matrix
Λ satisfying Hessϕ(x∗) = QΛQT and we denote these components

Q =

q1,1 · · · q1,n
...

. . .
...

qn,1 · · · qn,n

 ,Λ =

λ1 . . .

λn

 , (4)

where λi > 0, 1 ≤ i ≤ n denote the eigenvalues of Hessϕ(x∗).
The main theorem in this section is following.

Theorem 2. Assume (B). Define w =
∫
C e

− 1
2

∑n
i=1 x

2
i dx, where C is given by

C =

{
(x1, · · · , xn) ∈ Rn

∣∣∣∣ n∑
k=1

qji,k√
λk
xk ≤ 0 (1 ≤ i ≤ m)

}
, (5)

for 1 ≤ m ≤ n and C = Rn for m = 0. Then, we have

I(θ) ∼ w
f(x∗)

|Hessϕ(x∗)| 12
e
−θ2ϕ(x∗)+k(θ)ψ(x∗)+

k(θ)2

2θ2

∑n
i=1

1
λi

(
∑n

j=1 ∂iψ(x
∗)qj,i)

2

θn
, θ → ∞. (6)
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