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1 Introduction and main result

For a one-dimensional fractional Brownian motion (fBm) B with the Hurst 1/3 < H < 1, we
consider a one-dimensional stochastic differential equation (SDE)
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where zy € R is a deterministic initial value and d° B stands for the symmetric integral in the sense
of Russo-Vallois. In order to approximate the solution to (), we consider the Crank-Nicholson
scheme as real-valued stochastic process on the interval [0,1]. In this talk, we study asymptotic
error distributions of the scheme.

In what follows, we assume that the coefficients b and ¢ in (I) are smooth and they are bounded
together with all their derivatives. We give the definition of the Crank-Nicholson scheme for the
m-th dyadic partition {r]* = k2=™}3
Definition 1.1 (The Crank-Nicholson scheme). For every m € N, the Crank-Nicholson scheme
XCON() 1 10,1] — R is defined by a solution to an equation
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Since the Crank-Nicholson scheme is an implicit scheme, we need to restrict the domain of it
and assure the existence of a solution to the equation above. Roughly speaking, the existence of
the solution is ensured for large m.

In order to state our main result concisely, we set w = ob’ — o’b and
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We assume the following hypothesis in order to obtain an expression of the error of the scheme:

*This talk is based on a joint work with Professor Shigeki Aida.



Hypothesis 1.2. info > 0.
The following is our main result:

Theorem 1.3. Assume that Hypothesis T2 is satisfied. For 1/3 < H < 1/2, we have
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weakly with respect to the uniform norm. Here U a stochastic process defined by
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where o3 1 is a positive constant, foz = (02)"/24 and W is a standard Brownian motion indepen-
dent of B.

2 Sketch of proof

We explain the concept of perturbation method and give a sketch of proof of our main theorem.
The idea of perturbation method is to find a piecewise linear stochastic process h = h("™) :

[0,1] — R such that Xf]:%’3+h = X%y(m) for every k = 1,...,2™, where X®0:B+% is a solution to

an SDE with the same initial value xy and a perturbed driver B + iL, that is,
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Under Hypothesis [, we see unique existence of h and obtain an expression of it.

From the expression of h(™) and the Lipschitz continuity of the solution map B +— X708 we
construct a piecewise linear function h = ™) : [0,1] — R such that (a) 2mGH=1/2) (M) converges
to U defined by (8) and (b) h(™ —h("™) is negligible. We can show Assertion (a) by using the fourth
moment theorem. Assertion (b) is a nontrivial part in our proof. In order to justify Assertion (b),
we need the following step:

D1) estimate 6(™) = max;<p<om

X%\,I(m) - X%‘%’B| from the definition of the scheme,

(
(H1) estimate [|A(™ —h("™) || by a quantity involving 6™ from the construction of 2(™ and h(™),
(D2) estimate 6™ by a quantity involving 6™ itself from (H1),
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show a sharp estimate of §(™) by using (D2) repeatedly and (D1),

)
)
)
) show Assertion (b) from (D3) and (H1).

For simplicity, we explain how to see the asymptotic error distribution of X 1C Nom) _ x e 0.8, By
using the properties of h("™) and the decomposition
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we see Theorem 3. In fact, Assertion (a) implies that the first term converges to a nontrivial
process, that is, Qm(SH’l/z)Vh(m)Xlz"’B = Vzm(gH_uz)h(m)Xf"’B — VUXTO’B as m — oo. The
convergences of the second and third term to 0 follow from Assertion (a) and (b), respectively.
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