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1 Introduction and main result

For a one-dimensional fractional Brownian motion (fBm) B with the Hurst 1/3 < H < 1, we
consider a one-dimensional stochastic differential equation (SDE)

Xt = x0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) d
◦Bs, t ∈ [0, 1],(1)

where x0 ∈ R is a deterministic initial value and d◦B stands for the symmetric integral in the sense
of Russo-Vallois. In order to approximate the solution to (1), we consider the Crank-Nicholson
scheme as real-valued stochastic process on the interval [0, 1]. In this talk, we study asymptotic
error distributions of the scheme.

In what follows, we assume that the coefficients b and σ in (1) are smooth and they are bounded
together with all their derivatives. We give the definition of the Crank-Nicholson scheme for the
m-th dyadic partition {τmk = k2−m}2mk=0:

Definition 1.1 (The Crank-Nicholson scheme). For every m ∈ N, the Crank-Nicholson scheme
XCN(m) : [0, 1] → R is defined by a solution to an equation

X
CN(m)
0 = x0,

X
CN(m)
t = X

CN(m)
τm
k−1

+
1

2

{
b(X

CN(m)
τm
k−1

) + b(X
CN(m)
t )

}
(t− τmk−1)

+
1

2

{
σ(X

CN(m)
τm
k−1

) + σ(X
CN(m)
t )

}
(Bt −Bτm

k−1
) for τmk−1 < t ≤ τmk .

Since the Crank-Nicholson scheme is an implicit scheme, we need to restrict the domain of it
and assure the existence of a solution to the equation above. Roughly speaking, the existence of
the solution is ensured for large m.

In order to state our main result concisely, we set w = σb′ − σ′b and

Jt = exp

(∫ t

0

b′(Xu) du+

∫ t

0

σ′(Xu) d
◦Bu

)
.

We assume the following hypothesis in order to obtain an expression of the error of the scheme:
∗This talk is based on a joint work with Professor Shigeki Aida.
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Hypothesis 1.2. inf σ > 0.

The following is our main result:

Theorem 1.3. Assume that Hypothesis 1.2 is satisfied. For 1/3 < H < 1/2, we have

lim
m→∞

2m(3H−1/2){XCN(m) −X} = σ(X)U + J

∫ ·

0

J−1
s w(Xs)Us ds

weakly with respect to the uniform norm. Here U a stochastic process defined by

Ut = σ3,H

∫ t

0

f0,3(Xu) dWu,(2)

where σ3,H is a positive constant, f0,3 = (σ2)′′/24 and W is a standard Brownian motion indepen-
dent of B.

2 Sketch of proof

We explain the concept of perturbation method and give a sketch of proof of our main theorem.
The idea of perturbation method is to find a piecewise linear stochastic process h̃ ≡ h̃(m) :

[0, 1] → R such that Xx0,B+h̃
τm
k

= X
CN(m)
τm
k

for every k = 1, . . . , 2m, where Xx0,B+h̃ is a solution to

an SDE with the same initial value x0 and a perturbed driver B + h̃, that is,

Xx0,B+h̃
t = x0 +

∫ t

0

b(Xx0,B+h̃
s ) ds+

∫ t

0

σ(Xx0,B+h̃
s ) d◦(B + h̃)s.

Under Hypothesis 1.2, we see unique existence of h̃ and obtain an expression of it.
From the expression of h̃(m) and the Lipschitz continuity of the solution map B 7→ Xx0,B , we

construct a piecewise linear function h ≡ h(m) : [0, 1] → R such that (a) 2m(3H−1/2)h(m) converges
to U defined by (2) and (b) h̃(m)−h(m) is negligible. We can show Assertion (a) by using the fourth
moment theorem. Assertion (b) is a nontrivial part in our proof. In order to justify Assertion (b),
we need the following step:

(D1) estimate δ(m) = max1≤k≤2m |XCN(m)
τm
k

−Xx0,B
τm
k

| from the definition of the scheme,

(H1) estimate ∥h̃(m)−h(m)∥∞ by a quantity involving δ(m) from the construction of h̃(m) and h(m),

(D2) estimate δ(m) by a quantity involving δ(m) itself from (H1),

(D3) show a sharp estimate of δ(m) by using (D2) repeatedly and (D1),

(H2) show Assertion (b) from (D3) and (H1).

For simplicity, we explain how to see the asymptotic error distribution of X
CN(m)
1 −Xx0,B

1 . By
using the properties of h(m) and the decomposition

X
CN(m)
1 −Xx0,B

1 = Xx0,B+h̃(m)

1 −Xx0,B
1

= ∇h(m)X
x0,B
1 + {Xx0,B+h̃(m)

1 −Xx0,B+h(m)

1 }+ {Xx0,B+h(m)

1 −Xx0,B
1 −∇h(m)X

x0,B
1 },

we see Theorem 1.3. In fact, Assertion (a) implies that the first term converges to a nontrivial

process, that is, 2m(3H−1/2)∇h(m)X
x0,B
1 = ∇2m(3H−1/2)h(m)X

x0,B
1 → ∇UX

x0,B
1 as m → ∞. The

convergences of the second and third term to 0 follow from Assertion (a) and (b), respectively.
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