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1 Aim

- 4 a very general LDP of FW-type in
Theorem 2.1, Takanobu-Watanabe ’'93.

- Prob. measures are not pushforwards of (scaled)
Wiener measure, but of measures of finite energy.

- It can be regarded as a generalization of LDP of
FW-type for scaled pinned diffusion measures.

A a proof (It seems still open)



- We reformulate this LDP on
geometric rough path space

- We give a rigorous proof by using RP theory,
Malliavin calculus, quasi sure analysis.

- As a corollary, we obtain the LDP conjectured in
TW '93, (thanks to Lyons’ continuity thm &
contraction principle).

|Remark] Elliptic case was done in I. 12+
We try (strongly) hypoelliptic case [much harder].
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2 Background of Schilder/FW-type LDP
on RP space

- Ledoux-Qian-Zhang '02. Schilder-type LDP for
Brownian RP.

- In RP theory 1t6 map is conti. (Lyons’ conti.
thm.), from which FW-type LDP is immediate.

- Since then, LDP became a central topic in (the
prob. aspect of) RP theory. 3 Many papers.

- My previous work (l. '12+4) was an attempt to
extend LQZ’s method to pinned diffusions.
(didn’t know TW). This work is a continuation.



3 Setting

Vi : R™ — R™ vector fields (0 < 7 < d).
(Al): C°° with bounded drivatives of all order > 1.

Consider the scaled SDE (0 < ¢ < 1)

d
dX; = e ) Vi(X;)odw; + e*Vo(X;)dt

1=1

with X; =z € R".



Strong hypoellipticity condition everywhere:

Xh1:={V; |1 <1< d} and
Y i={[Vi, W] |1 <i<d,W € Zp_1}
for £k > 2 recursively.
Yp(x) :={W((x) | W € 3} CR" for x € R"

(A2): For any z € R", U2 Xg(x) spans
R™ = T,.R" in the sense of linear algebra.

Note: Vj is NOT involved.



& Under (A1)-(A2), X is non-degenerate in the
sense of Malliavin. (¢ > 0, > 0)

® Hence, T'(X;) =T o X{ € D_ is well-defined
as a Watanabe distribution for VT' € S’'(R").

& In particular, dthe heat kernel
pi(wa ZB,) — E[5wz(X€(t, ZB))]

Note: p;(x,z’) > 0 fore > 0,t > 0, z,2’ € R"
(.- controllability of the skeleton ODE)



Skeleton ODE
h € H: a Cameron-Martin path.
¢ = ¢(t, x, h) is a unique sol. of

d
dopy = Z Vi(¢¢)dh?, Po =
1=1
No drift !

& Set K=® :={hcH | $(1,z,h) =a'},
which is non-empty (controllability of the ODE)



Projection onto a linear subspace
V: an l-dim. linear subspace of R" (1 <1 < n)
I1,, : R™ — V: the orthogonal projection.

YS :=1Iv(X[), 9@, xz,h):=1Ily(e(t,x,h)),
M*¢ :={h e H|p(l,z,h) =a € V}
— U{Klw’m/ | 2’ € H;l(a)} #= 0.

@ ForacV, 0,(YF) = (0501ILy)(X7) is
well-defined as a positive Watanabe distribution.
Hence, a finite measure on the Wiener space.
(E[0a(Y;")] > 0 = dnormalization)



Rough path space

Gﬂf 4. (R): geometric RP space with
(a, 4m)-Besov topology, where
1 1 1 1
meN, -—-<a<- s.t, « > —,
3 2 4m 3

1
8m(§ —a) > 2.

& Besov-Holder embedding.
d
GQZ 4, (RY) = GO 4 (RY)

a,d4m



”Wl ”a 4m — B + ||W2||2a,2m—B

4m

| 1/4m
/ / dsdt)
0<s<t<1 It — 8|1+4ma

|Ws’t|2m 1/2m
dsdt) .
0<s<t<1 |t — s|lTdma

When w = (w', w?) is Brownian RP,

(a power of) the above is a D.-functional.

— Cut-off within Watanabe’s theory is available



Brownian rough path
L:Cy([0,1],RY) — GNZ , (R%): the RP lift

a.,4m

map via the dyadic polygonal approximations,

- L is defined outside a slim subset of Wiener sp.
= (eL£).|0,(Y, )| is a measure on GﬂfAm(IR{d).
-w — L(w) =: W = (W, W?)

is oco-quasi continuous.  (Aida '11)
- L and its domain are compatible with

constant multiplication and CM-shift



Rate function
Set a good rate function

I : GQZ , (R™) — [0, oo] by

a,d4m

IRll3. (if w = L(h) for 3h € M™?)
I (w) = 2 N ’
o'e (otherwise).

Also set

. L a
I,(w) = I, (w) — min{ > | h € M™%}




4 Main Result

Assume (A1), (A2) and the condition
for (a,4m). Then, we have

(1) The family {(eL).[0,(Y,)|}e~0 of finite
measures satisfies an LDP on GQZ , (R%) as

o, 4m

e \( 0 with a good rate function I,

(2) Normalized meausures of the above satisfies an
LDP with a good rate function I;.
(immediate from (1))



Theorem 1 above also holds w.r.t.
o’-Holder geometric rough path topology for any
o' € (1/3,1/2), since we can find a, m with that
condition such that (a, 4m)-Besov topology is
stronger than a’-Hélder topology.

For any
continuous map F' from the geometric rough path
space to a Hausdorff topological space, the image

measure F, (cL).[0,(Y;" )] satisfies an LDP, too.
— You can take another (Lyons-)Itd map !



In Theorem 1, "strongly hypoelliptic”
canNOT be weakened to "hypoelliptic.”
(.~ 3 a simple counterexample.)

The drift is of a special form £°V, ().
We probably cannot extend Theorem 1 for Vj (e, x),
unless lim Vy(e, ) = 0.
e 0
(.~ This guess is based on a bad example of
short time asymptotics of heat kernel in

BenArous-Léandre [PTRF '91, " Part 11”])



5 Corollaries

A; : RY — RY vector fields which satisfies (A1)
(0 <1 < d).
& Another SDE:

d
dZ; = e Ai(Z;) o dw} + > Ao(Z;)dt
1=1
with ZS =2z e R".
& Skelton ODE: For h € H,

d
d¢y = Z Ai(Ct)dhia Co = z.
=1



A= Ze( ., z,w); oo-quasi conti. modification of
W3 w— Z°(-,z,w) € Ca—H([Oa 1]9RN)
(1/3 < a < 1/2).

— Z:[(sa(Yls)] — ZE( Ty Ry )*[5a(Y1€)]
well-defined as a measure on C*~* ([0, 1], RYY).
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Rate functions
I, I, : c*~H([0,1],RY) — [0, oc].
Set

. NIkl v
inf{ > | h e M*%st. b=C((-,2,h) },

0, (h E M™% st. b= C( y ,Z,h))-

Iz(b) « =

and I5(b) := I»(b) — min{

hl|3
;3?{ | h € M™%},



let 1/3 < a < 1/2. Assume
(A1), (A2) for V;’s and (A1) for A;’s.
Then, we have

(1) The family { Z:[éa(Yf)] }e>o satisfies an
LDP on C*~*([0,1],R") as € \, 0 with a good
rate function I,.

(2) Normalized meausures of the above satisfies an
LDP with a good rate function I.



e Special case
Take R®" = R!' = RN, . = 2, V; = A, for all i.
Write a = 2’ € R™.

— szy;f-::Zf, ¢t=¢t=Ct
and M®% = IC®%* |

Normalization of Z¢ 0, (Y7 )] is nothing but the the
pinned diffusion measure Q7 , associated with the

d
1
generator % (V + 5 Z V;z) with the starting point
=1

x and the ending point z’.



Let 1/3 < a < 1/2 and assume (Al), (A2).
—>  The family {Q _ }c>0 satisfies an LDP on
c>—H([0,1],RY) as € \ 0.

[Remark]

& Even Corollary 3 looks new.

& However, there is a parallel result on compact
manifolds. Analytic method 4 a bit of RP theory.
Bailleul(-Mesnager-Norris) ‘134, 14+
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6 Sketch of Proof of " Theorem 1, (1)”

Difficulty of proof (when compared to I. '12+).

Lower est. > Upper est.

e Upper estimate is similar to the one in I. '12+4
e In lower estimate, it becomes difficult to prove
non-degeneracy of deterministic Malliavin
covariance (because it does fail at some CM paths
in the hypoelliptic case)



Keys in Upper Estimate

& Integration by parts for Watanabe distributions
—— The generalized £ morphs into the usual E.

& Kusuoka-Stroock’s quantitative proof of
non-degeneracy of Malliavin covariance matrix

|(det oxs) e < Ki(p)e™™% (e ¢ 0)



& Using them, we get for Yw € GQ5B (Rd),

a.,4m

. 1. 2 . g < —
lim lime®log(e£)«[0a (Y1) (Br(W)) < —I(w)
where B,.(w) is the "ball” of radius r centered at w.
—> upper estimates for compact subsets.

® For closed sets, we need large deviation estimate
on RP space w.r.t. Gaussian capacities.

(shown in I. '12+)

[plus, compactness of embedding

GQP,, 5 GQE, ifa >al

a’,d4m a,4m



Keys in Lower Estimate
® Non-degeneracy of deterministic Malliavin
covariance. (Note: it fails at some h € H).

Assume (Al), (A2). Let x,z’ € R™ and
he K= :={heH|p(,z,h) =z'}.
Then, for any € > 0, there exists h® € K=" s.t.
(1) A =h%xn <se,
(2) o4,(h®) is non-degenerate,
(3) <(h,e)3y € W™ (W := Wiener sp.)
Proof is done by hand and fairly long.
This breaks down if 3 a drift term in skeleton ODE.
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& A modified version of Watanabe’s asymptotic
expansion theorem (in TW ’93).
e We use it
- for X*(1,z,w+ (h/e)) or Y¢(1,x,w + (h/€))
~at h € K= C M™° (if IIyz2" = a)

as in the prevous Lemma.

e This version fits extremely well with localization
procedure on RP space.
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The END



