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Background

We consider “ω-wise” solutions of non-liner stochastic PDEs.

Examples:

∂th(t, x) = ∆h(t, x) + |∇h(t, x)|2 + ξ(t, x) : KPZ

∂tΦ(t, x) = ∆Φ(t, x) − Φ(t, x)3 + ξ(t, x) : Φ4-model

x ∈ Rd, t ≥ 0

ξ : space-time white noise on [0,∞) × Rd.

The solution of stochastic heat equation:

∂tX(t, x) = ∆X(t, x) + ξ(t, x)

satisfies X(t, ·) ∈ C
2−d
2

−.

We cannot define above non-liner terms, because they are related to
the product ξη of ξ ∈ Cα and η ∈ Cβ with α + β ≤ 0.
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Subcriticality

h(t, x) → hδ(t, x) = δ−
2−d
2 h(δ2t, δx),

ξ(t, x) → ξδ(t, x) = δ
d+2
2 ξ(δ2t, δx) (δ > 0).

Changing variables

∂th(t, x) = ∆h(t, x) + |∇h(t, x)|2 + ξ(t, x)

→ ∂thδ(t, x) = ∆hδ(t, x) + δ
2−d
2 |∇hδ(t, x)|2 + ξδ(t, x)

Formally, the non-liner term vanish as δ → 0, iff d = 1 :“subcritical”
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Hairer’s theory

M. Haier introduced “regularity structure(RS)”. (2013)

We can construct RS from given stochastic PDE iff it is subcritical.

We can define the “renormalization map” on RS, and obtain a result
as below:

.
Theorem (Hairer, 2013)
..

.

. ..

.

.

Let ρ : R2 → R be a smooth, nonnegative, symmetric, and compactly
supported function s.t.

∫
ρ = 1. Set ρϵ(t, x) = ϵ−3ρ(ϵ−2t, ϵ−1x), and

ξϵ = ξ ∗ ρϵ.
Then, there exists a sequence of constants {Cϵ ∼ 1

ϵ
} s.t. the sequence of

solutions hϵ (local in time) to

∂thϵ(t, x) = ∂2
xhϵ(t, x) + (∂xhϵ(t, x))

2 − Cϵ + ξϵ(t, x),

x ∈ T, t ≥ 0

converges to a stochastic process h.
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More rough noise

Define ∂γ
xξ = (−∂2

x)
γ
2 ξ (γ > 0) as a random distribution s.t.

(−∂2
x)

γ
2 ξ(ϕ) = ξ((−∂2

x)
γ
2ϕ) (∀ϕ ∈ C∞

0 (R2)),

where (−∂2
x)

γ
2ϕ = F−1(|ξ|γFϕ).

Does it hold similar renormalization to the following equation?

∂th(t, x) = ∂2
xh(t, x) + (∂xh(t, x))

2 + ∂γ
xξ(t, x)
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Main result

This eq is subcritical iff γ < 1
2
.

But similar renormalization holds iff γ < 1
4
.

.
Theorem (Hoshino, 2015)
..

.

. ..

.

.

Let 0 ≤ γ < 1
4
. Let ρ : R2 → R be a smooth, nonnegative, symmetric,

and compactly supported function such that
∫
ρ = 1.

Then, there exists a sequence of constants {Cϵ ∼ ϵ−1−2γ} s.t. the
sequence of solutions hϵ (local in time) to

∂thϵ(t, x) = ∂2
xhϵ(t, x) + (∂xhϵ(t, x))

2 − Cϵ + ∂γ
xξϵ(t, x),

x ∈ T, t ≥ 0

converges to a stochastic process h.
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Notations

|k|s := 2k0 + k1, ∂
k := ∂k0

t ∂k1
x (k = (k0, k1) ∈ Z2

+).

||z||s :=
√

|t| + |x| (z = (t, x) ∈ R2).

For a function ρ on R2,

Sδ
s,zρ(z

′) := δ−3ρ(δ−2(t′ − t), δ−1(x′ − x)).

Br = {ρ ∈ C∞
0 (R2); ||ρ||Cr ≤ 1, suppρ ∈ Bs(0, 1)} (r ∈ N).

Cα
s (R

2) (α > 0) : locally α-Hölder space w.r.t || · ||s.
Cα
s (R

2) (α < 0) : All of distributions ξ s.t.

|ξ(Sδ
s,zρ)| . δα,

uniformly over ρ ∈ Br (r = ⌈−α⌉) and locally uniformly over
z ∈ R2.
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Abstraction of stochastic PDE

Mild form

∂th = ∂2
xh + (∂xh)

2 + η (η : smooth noise), h(0, ·) = h0

⇔ h = G ∗ (1t>0((∂xh)
2 + η)) + Gh0.

Formally, h is represented by a sum of distributions with negative
regularities, and a remainder.

We reformulate KPZ eq into an equation of H =
∑

α hατα (τα :
basis vector, hα : a function on R2) which values in an abstract liner
space.

H = G(1t>0((∂H)2 + Ξ)) + Gh0
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Regularity structures

.
Definition (Regularity structure)
..

.

. ..

.

.

A regularity structure (A, T,G) consists of the following elements:

A ⊂ R, locally finite, bounded from below, 0 ∈ A.

T =
⊕

α∈A Tα. Each Tα is a liner space with a norm || · ||α.
G is a group of linear operators T → T , such that

Γτ − τ ∈
⊕

β<α,β∈A

Tβ

for all Γ ∈ G, α ∈ A, τ ∈ Tα.

α0 := inf A.
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Model

.
Definition (Model)
..

.

. ..

.

.

A model (Π,Γ) on Rd for a regularity structure (A, T,G) consists of the
following elements:

Πz(z ∈ Rd) : T → D′(Rd) is linear map such that

|(Πzτ )(Sδ
s,zρ)| . δα (loc in z),

for all α ∈ A, τ ∈ Tα, and ρ ∈ Br (r = ⌈−α0⌉).
Γz,z′(z, z′ ∈ Rd) ∈ G is an element such that

||Γz,z′τ ||β . ||z − z′||α−β
s (loc in z, z′),

for all α, β ∈ A (β < α) and τ ∈ Tα.

ΠzΓz,z′ = Πz′ , Γz,z′Γz′,z′′ = Γz,z′′ (∀z, z′, z′′ ∈ Rd).
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Reconstruction

.
Definition (Modelled distribution)
..

.

. ..

.

.

Let (Π,Γ) be a model. f : Rd → T is in Dγ (γ ∈ R) iff

||f(z) − Γz,z′f(z′)||α . ||z − z′||γ−α
s (loc in z, z′),

for all α ∈ A with α < γ.

.
Theorem (Reconstruction theorem)
..

.

. ..

.

.

Let (Π,Γ) be a model and γ > 0. Then there exists a unique liner map
R : Dγ → Cα0

s (Rd) s.t.

|(Rf − Πzf(z))(Sδ
s,zρ)| . δγ (loc in z),

for all f ∈ Dγ .
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RS for KPZ

U :All of basis vectors that describe h.
V :All of basis vectors that describe (∂xh)

2 + η.

1, X0, X1,Ξ ∈ V,

τ ∈ V ⇒ Iτ ∈ U (I(Xk) = 0),

∂(Xk0
0 Xk1

1 ) = k1X
k0
0 Xk1−1

1 ,

τ1, τ2 ∈ U ⇒ ∂τ1∂τ2 ∈ V.

Regularities of basis vectors.

|1| = 0, |X0| = 2, |X1| = 1, |Ξ| = α0 (to be determined)

|ττ ′| = |τ | + |τ ′|
|Iτ | = |τ | + 2, |∂Iτ | = |τ | + 1

F = U ∪ V , T = spanF .
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RS for KPZ

ξϵ → ξ in prob in C−3
2
−κ

s (κ > 0).

We use shorthand notations to describe basis vectors.

We should choose α0 = −3
2
− κ (κ > 0 : sufficiently small)

⇒ Ξ, , , , , , , , 1, · · · ∈ F
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RS for fractional case

∂γ
xξϵ → ∂γ

xξ in prob in C−3
2
−γ−κ

s (κ > 0).

We should choose α0 = −3
2
− γ − κ (κ > 0 : sufficiently small)

0 ≤ γ < 1
10

⇒ Ξ, , , , , , , , 1, . . .
1
10

≤ γ < 1
6

⇒ Ξ, , , , , , , , , , , 1, . . .
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RS for fractional case

1
6
≤ γ < 3

14

⇒ Ξ, , , , , , , , , , ,

, , , , , , , , , , 1, . . .
3
14

≤ γ < 1
4

⇒ Ξ, , , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , , , 1, . . .

and so on...
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Canonical model

There is a canonical lift η into (Πη,Γη):

Πz1(z
′) = 1, ΠzΞ(z′) = η(z′) (1)

ΠzX0(z
′) = t′ − t, ΠzX1(z

′) = x′ − x (2)

Πzττ
′ = (Πzτ )(Πzτ

′) (3)

ΠzIτ = G ∗ Πzτ −
∑

|k|<|Iτ |

(· − z)k

k!
∂kG ∗ Πzτ (4)

Πz∂Iτ = ∂xG ∗ Πzτ −
∑

|k|<|∂Iτ |

(· − z)k

k!
∂k∂xG ∗ Πzτ (5)
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Admissible model

Assume (1)(2)(4)(5) → “Admissible model”

For each admissible model Z, a linear map G : Dθ → Dθ+2 is
defined and satisfies

RGf = G ∗ Rf, G = I + ({Xk}-valued part)
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Solution map

.
Theorem (Hairer, 2013)
..

.

. ..

.

.

α0 ∈ (−2,−3
2
), θ > −α0, ζ ∈ (0, α0 + 2)

For each initial condition h0 and admissible model Z, there exists
T > 0 s.t. the equation

H = G(1t>0((∂H)2 + Ξ)) + Gh0

has a unique solution H ∈ Dθ,ζ (permit singularity as t → 0+) on
t ∈ [0, T ].

S : (h0, Z) 7→ H is continuous.
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Solution map

When Z = (Πη,Γη) for some smooth noise η, we have

RH = G ∗ (1t>0R((∂H)2 + Ξ))

= G ∗ (1t>0((∂xRH)2 + η)).

So h = RH solves ∂th = ∂2
xh + (∂xh)

2 + η.
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Renormalized KPZ eq

α0 = −3
2
− κ (κ > 0 : sufficiently small)

For any constants C ,C ,C , the set of functions

Π̂η
zτ = Πη

zτ (τ = Ξ, , , , , 1),

Π̂η
z = Πη

z − C ,

Π̂η
z = Πη

z − C ,

Π̂η
z = Πη

z − C

is uniquely extended to an admissible model (Π̂η, Γ̂η).

h = S(h0, Ẑ
η) solves the equation

∂th = ∂2
xh + (∂xh)

2 − (C + C + 4C ) + η

Masato Hoshino (The University of Tokyo) KPZ equation with fractional derivatives of white noise October 21, 2015 20 / 31



Convergence of renormalized models

.
Theorem
..

.

. ..

.

.

Choose proper C(ϵ)
τ (τ = , , ).

Let Z(ϵ) be a model lifted from ξϵ

Let Ẑ(ϵ) be the renormalized model. Then there exists an admissible
random model Ẑ s.t.

Ẑ(ϵ) → Ẑ in prob (ϵ → 0).
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For the fractional case

.
Theorem
..

.

. ..

.

.

Let 0 ≤ γ < 1
4

Choose proper C(ϵ)
τ for all τ ∈ F with ∥τ∥ = 2, 4, 6.

Let Z(ϵ) be a model lifted from ∂γ
xξϵ

Let Ẑ(ϵ) be the renormalized model. Then there exists an admissible
random model Ẑ s.t.

Ẑ(ϵ) → Ẑ in prob (ϵ → 0).
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Proof of renormalization

Π̂
(ϵ)
0 τ (Sλ

s,0ϕ) convergences for all |τ | ≤ 0

⇒ (Π̂(ϵ), Γ̂(ϵ)) convergences.

For each τ ∈ F , Π̂
(ϵ)
0 τ has the form

Π̂
(ϵ)
0 τ (z) =

∑
Ik(Ŵ(ϵ,k)τ (z; ·, . . . , ·))

Ik:kth multiple Wiener-Itô integral. Ŵ(ϵ,k)τ (z) ∈ (L2(R× T))⊗k.

By Itô isometry, we have

E|Π̂(ϵ)
0 τ (Sλ

s,0ϕ)|

.
∑∫

Sλ
s,0ϕ(z)S

λ
s,0ϕ(z

′)

× ⟨Ŵ(ϵ,k)τ (z), Ŵ(ϵ,k)τ (z′)⟩(L2(R×T))⊗kdzdz′
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Proof of renormalization

Assume that there exist Ŵ(k)τ (z) s.t.

|⟨Ŵ(k)τ (z), Ŵ(k)τ (z′)⟩(L2(R×T))⊗k| . ||z − z′||2|τ |+δ
s

|⟨δŴ(ϵ,k)τ (z), δŴ(ϵ,k)τ (z′)⟩(L2(R×T))⊗k| . ϵδ||z − z′||2|τ |+δ
s

(δW(ϵ,k) = W(k) − W(ϵ,k))

with 2|τ | > −3, for some δ > 0.

Note that∫
Sλ
s,0ϕ(z)S

λ
s,0ϕ(z

′)||z − z′||2|τ |+δ
s dzdz′ . λ2|τ |+δ

Then Ẑ(ϵ) → Ẑ.
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Proof of renormalization

Π̂
(ϵ)
0 (z) = ∂xG ∗ ∂γ

xξ(z) = I1(∂
γ
x∂xG ∗ ρϵ(z − ·))

Ŵ(ϵ,1) (z; ·) = ∂γ
x∂xG ∗ ρϵ(z − ·)

Ŵ(1) (z; ·) = ∂γ
x∂xG(z − ·)

|∂γ
x∂xG(z)| . ||z||−2−γ

s around 0.

⟨Ŵ(1) (z), Ŵ(1) (z′)⟩(L2(R×T)):z z0 . ||z − z′||−1−2γ
s

−1 − 2γ > 2| |.
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Proof of renormalization

Π
(ϵ)
0 (z) = I2( z ) + z

Π̂
(ϵ)
0 (z) = I2( z ), C

(ϵ)
= z

Π̂0 (z) = I2( z )
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Proof of renormalization

⟨Ŵ(2) (z), Ŵ(2) (z′)⟩(L2(R×T))⊗2 :z �z . ||z − z′||−2−4γ
s

−2 − 4γ > 2| |.
−2 − 4γ > −3 ⇔ γ < 1

4
.z . z�1� 2

. ϵ−1−2γ
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Proof of renormalization

Π
(ϵ)
0 (z) = I4( z ) + I2( z ) + z

Π̂
(ϵ)
0 (z) = I4( z ) + I2( z ), C

(ϵ)
= z

Π̂
(ϵ)
0 (z) = I4( z ) + I2( z ),
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Proof of renormalization

⟨Ŵ(4) (z), Ŵ(4) (z′)⟩(L2(R×T))⊗4 :z �z
. ||z − z′||−8γ

s

⟨Ŵ(2) (z), Ŵ(2) (z′)⟩(L2(R×T))⊗2 :z �z . z �z
. z �z�2� 4 + z �z�2� 4
. �2� 2 �2� 2�2� 4z �z . ||z − z′||−8γ

s
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Proof of renormalization

−8γ > 2| |.z . z�2 � 4
. ϵ−4γ
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