KPZ EQUATION WITH FRACTIONAL DERIVATIVES OF WHITE NOISE

MASATO HOSHINO

We discuss the stochastic partial differential equation

(1)
$$\partial_t h(t,x) = \partial_x^2 h(t,x) + (\partial_x h(t,x))^2 + \partial_x^\gamma \xi(t,x)$$

for $(t,x) \in [0,\infty) \times \mathbb{T}$ with $\gamma \geq 0$. Here, ξ is a space-time white noise on $[0,\infty) \times \mathbb{T}$ and $\partial_x^{\gamma} = -(-\partial_x^2)^{\frac{\gamma}{2}}$ is the fractional derivative. When $\gamma = 0$, this equation is called KPZ equation, which is proposed in [3] as a model of surface growth. Hairer discussed the solvability of KPZ equation in [1]. He showed in [1] that the renormalized equation

(2)
$$\partial_t h_{\epsilon}(t,x) = \partial_x^2 h_{\epsilon}(t,x) + (\partial_x h_{\epsilon}(t,x))^2 - C_{\epsilon} + \xi_{\epsilon}(t,x),$$

where ξ_{ϵ} is a smooth approximation of ξ and $C_{\epsilon} \sim \frac{1}{\epsilon}$ is a sequence of constants, has a unique limiting process h, which is independent of the way to approximate ξ .

Our goal is to make the noise rougher and see to what extent this theory works. Because of the "local subcriticality" ([2]), we can expect that the similar results hold if $\gamma < \frac{1}{2}$. However, we show that the renormalization like (2) is possible only for $0 \le \gamma < \frac{1}{4}$.

Theorem 1. Let $\rho = \rho(t, x)$ be a function on \mathbb{R}^2 which is smooth, compactly supported, symmetric in x, nonnegative, and satisfies $\int_{\mathbb{R}^2} \rho(t, x) dt dx = 1$. Let $0 \leq \gamma < \frac{1}{4}$ and $0 < \alpha < \frac{1}{2} - \gamma$. Then there exists a sequence of constants C_{ϵ} such that

- (1) We have $C_{\epsilon} \leq C \epsilon^{-1-2\gamma}$ for some constant C (depending on γ and ρ).
- (2) For every initial condition $h_0 \in C^{\alpha}(\mathbb{T})$, the sequence of solutions h_{ϵ} to the equation:

$$\partial_t h_\epsilon(t,x) = \partial_x^2 h_\epsilon(t,x) + (\partial_x h_\epsilon(t,x))^2 - C_\epsilon + \partial_x^\gamma \xi_\epsilon(t,x)$$

on $(t,x) \in [0,T) \times \mathbb{T}$ for some random time T, converges to a unique stochastic process h, which is independent of the choice of ρ .

This convergence holds in probability in the uniform norm on all compact sets in $[0,T) \times \mathbb{T}$ and α -Hölder norm on all compact sets in $(0,T) \times \mathbb{T}$.

References

- [1] Hairer, M.: Solving the KPZ equation, Ann. Math. (2), **178** (2013) 559–664.
- [2] Hairer, M.: A theory of regularity structures, Invent. Math., **198** (2014) 269–504.
- [3] Kardar, M., Parisi, G., and Zhang, Y.-C.: Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986) 889–892.