
. . . . . .

. . . . . . . . . . . . . . . . . .

Locality property of SKLE Some overview

.

.

. ..

.

.

Locality property and a related continuity problem
for SLE and SKLE II

Masatoshi Fukushima (Osaka)

joint work with Zhen Qing Chen (Seattle)

October 21, 2015

確率解析とその周辺

Osaka University, Σ-hall



. . . . . .

. . . . . . . . . . . . . . . . . .

Locality property of SKLE Some overview

.

. .

1 Locality property of SKLE
Perturbations of the domain and a generalized Komatu Loewner
equation for image hulls {F̃t}
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Perturbations of the domain and a generalized Komatu
Loewner equation for image hulls {F̃t}

Let α(s) and b(s) be homogeneous functions on S of degree 0 and −1,
respectively,
both satisfying the Lipschitz continuity condition (L)
Let (ξ(t), s(t)), t < ζ, be the unique strong solution of The stochastic
differential equation

ξ(t) = ξ +

∫ t

0

α(s(t)− ξ̂(t))dBs +

∫ t

0

b(s(t)− ξ̂(t))ds (1.1)

sj(t) = sj +

∫ t

0

bj(s(t)− ξ̂(t))ds, t ≥ 0, 1 ≤ j ≤ 3N, (1.2)

where ζ is the time that (ξ(t), s(t)) approaches the point at infinity of
R× S.
The coefficients bj , 1 ≤ j ≤ 2N, are determined by the complex Poisson
kernel. They are homogeneous with degree −1 and satisfy condition (L).
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We write Dt = D(s(t)) ∈ D, D = D0

and we substitute (ξ(t), s(t)) into the K-L equation

d

dt
gt(z) = −2πΨs(t)(gt(z), ξ(t)), with g0(z) = z ∈ D, (1.3)

which admits a unique solution gt(z), t ∈ [0, tz) passing through
G =

∪
t∈[0,ζ){t} ×Dt.

The associated family of random growing H-hulls Ft = {z ∈ H : tz ≤ t}
is denoted by SKLEα,b

and is called a stochatic Komatu-Loewner evolution.

gt is the canonical map from D \ Ft.
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Let us consider any H-hull A ⊂ D(= D(s(0))) and

a canonical map ΦA from D \A onto D̃ ∈ D.

We let τA = inf{t > 0 : F t ∩A 6= ∅}.
We only consider those parameters t with t < τA.

Define the image hulls of {Ft} by

F̃t = ΦA(Ft), t < τ,

Let g̃t be the canonical map from D̃ \ F̃t onto D̃t

and ãt be its half-plane capacity: ãt = limz̃→∞ z̃(g̃t(z̃)− z̃).

Along with the canonical maps gt, ΦA and g̃t,
we consider the canonical map ht from Dt \ gt(A). Then

g̃t ◦ ΦA = ht ◦ gt (1.4)

because both of them are canonical maps from D \ (Ft ∪A).

See Figure 3.
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Define
ξ̃(t) = ht(ξ(t)). (1.5)

Denote by Ψ̃t(z, x), z ∈ D̃t, x ∈ ∂H, the BMD-complex Poisson kernel

of D̃t.

The derivative of a function f in the time parameter is designated by ḟ .

We can then prove the following generalized Komatu Loewner equation
for the image hulls {F̃t}.

.

Theorem 1.1

.

.

.

. ..

.

.

(i) It holds that
˙̃as = 2|h′

s(ξ(s))|2. (1.6)

(ii) For t ∈ (0, τ) and z ∈ D̃ \ F̃t,
g̃s(z) is continuously differentiable in s ∈ [0.t] and

dg̃s(z)

ds
= −2π|h′

s(ξ(s))|2 Ψ̃s(g̃s(z), ξ̃(s)), g0(z) = z. (1.7)
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[The proof of Theorem 1.1 (i)]

The identity ˙̃a(t) = 2|h′
t(ξ(t))|2 is well known for SLEκ.

We use a comparison theorem of the half-plane capacity
between simply and multiply connected domains first obtained by

[D] S. Drenning, Excursion reflected Brownian Motions and Loewner equations in

multiply connected domains, arXiv:1112.4123, 2011

for Jordan arcs using ERBM.

This comparison (identification) theorem is extended to a general
growing hulls using BMD in Appendix of

[CF3] Z.-Q. Chen and M. Fukushima, Stochastic Komatu-Loewner evolution and

BMD domain constant, arXiv:1410.8257vl
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The proof of Theorem 1.1 (ii) requires the following several steps:

Step I. Joint continuity of =g̃t(z)

We express =g̃t(z) in terms of =gt(z) and the ABM on H.

=gt(z) is jointly continuous in (t, z) as gt(z) is the solution of the ODE
(1.3).
Hence the joint continuity of =g̃t(z) follows from this expression.

The above expression is obtained by combining the relation

g̃t = ht ◦ gt ◦ Φ−1
A

with the probabilistic expression of the conformal map ht in terms of the
BMD on Dt found in [CFR]

and the conformal invariance of BMD and ABM.
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Step II. Joint continuity of g̃t(z)

In a similar way to §7, 8 of [CFR], we can deduce from Step I that,
for t ∈ [0, τ), g̃s(z̃) is jointly continuous in

(s, z̃) ∈ [0, t]× [(D̃ ∪ ∂H) \ F̃t \ Ã].

Step III. Joint continuity of ht(z), h
′
t(z), h

′′
t (z)

which can be obtained by combining Step II with the relation

ht = g̃t ◦ ΦA ◦ g−1
t

and the continuity of the solution of the K-L equation (1.3)
with respect to the initial time and initial position.

This step is also very crucial for an use of Itô formula in the next section.
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Derivation of the generalized K-L equation (1.7)

{Ft} is right continuous with limit ξ(t) by Theorem 2.2 of Lecture 1.

Hence {F̃t} is right continuous with limit ξ̃(t).

From Step I, we can also deduce that limt↓s g̃t ◦ g̃−1
s (z) = z locally

uniformly in z.

By combining those two properties, we can show that
the equation (1.7) holds true in the right derivative sense.

Since the right hand side of this equation as well as g̃t(z) are continuous
in t by virtue of Steps II, III,
we conclude that (1.7) is a genuine ODE.



. . . . . .

. . . . . . . . . . . . . . . . . .

Locality property of SKLE Some overview

Generalized Itô formula applied to the image process ξ̃(t)

The BMD domain constant is a function on S defined by

bBMD(s) = lim
z→0

2π(ΨD(s)(z,0)−ΨH(z,0)), s ∈ S. (1.8)

It can be shown to be a homogeneous function on S of degree −1
satisfying the Lipschitz condition (L)
by a conformal invariance of BMD and the the Lipschitz continuity of the
BMD complex Poisson kernel Ψ shown in [CFR].

The BMD domain constant indicates a descrepancy of the slit domain
D(s) from the upper half plane H with respect to BMD.

We put bBMD(ξ, s) = bBMD(s− ξ̂) for ξ ∈ R, s ∈ S.
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Notice that ξ̃(t) = ht(ξ(t)) where ht(z) is extended to be a conformal
map from

Gt = (Dt ∪ΠDt ∪ ∂H) \ (gt(A) ∪Πgt(A)),

ht(z) is a random adapted process.
ξ(t) ∈ ∂H is a continuous semi-martingale by (1.1):

dξ(t) = α(s(t)− ξ̂(t))dBt + b(s(t)− ξ̂(t))dt. (1.9)

By step III in the above, h′
t(z), h

′′
t (z) are jointly continuous.

If one can further check that

ht(z) is differntiable in t for each z ∈ ∂H\A and ḣt(z) is jointly continuous,
(1.10)

then, a generalized Itô formula (see §2 below) applies in getting

dξ̃(t) = ḣt(ξ(t))dt+ h′
t(ξ(t))dξ(t) +

1

2
h′′
t (ξ(t))d〈ξ〉t. (1.11)
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It readily follows from the relation ht = g̃t ◦ ΦA ◦ g−1
t

and the generalized K-L equation (1.7) that, for z ∈ Dt \ gt(A),

ḣt(z) = −2π|h′
t(ξ(t))|2Ψ̃t(ht(z), ht(ξ(t))) + 2πh′

t(z)Ψs(t)(z, ξ(t)),
(1.12)

Let B ∈ C be the disk centered at ξ(t) with B ⊂ Gt.
Expressing (hu(z)− ft(z))/(u− t), z ∈ B, by the Cauchy integral
formula and letting u → t by taking Step III in the above into account,
we can check the condition (1.10) and see that ḣt(z) is analytic in z ∈ B.
In particlular, ḣt(ξ(t)) can be computed by limz→ξ(t), z∈H ḣt(z) yielding

ḣt(ξ(t)) = h′
t(ξ(t)) bBMD(ξ(t), s(t))− |h′

t(ξ(t))|2 bBMD(ht(ξ(t)), ht(s(t)))

+ lim
z→ξ(t)

(
2|h′

t(ξ(t))|2

ht(z)− ht(ξ(t))
− 2h′

t(z)

z − ξ(t)

)
= h′

t(ξ(t)) bBMD(ξ(t), s(t))− |h′
t(ξ(t))|2 bBMD(ht(ξ(t)), ht(s(t)))

− 3h′′
t (ξ(t)). (1.13)
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We thus get from (1.9), (1.11) and (1.13)

.

Theorem 1.2

.

.

.

. ..

.

.

The image processs ξ̃(t) is a semi-martingale expreessed as

dξ̃(t) = h′
t(ξ(t))

(
b(s(t)− ξ̂(t)) + bBMD(ξ(t), s(t))

)
dt

+
1

2
h′′
t (ξ(t))

(
α(s(t)− ξ̂(t))2 − 6

)
dt (1.14)

−|h′
t(ξ(t))|2bBMD(ξ̃(t), ht(s(t)))dt+ h′

t(ξ(t))α(s(t)− ξ̂(t))dBt.
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Characterization of locality of SKLEα,−bBMD

Let {F̌t}t<τ̌ be the half-plane capacity reparametrization of the image

hulls {F̃t}t<τ ; namely,

F̌t = F̃ã−1(2t), τ̌A = ã(τA)/2. (1.15)

where ã(t) is the half-plane capacity of F̃t and ã−1 is its inverse function.

Accordingly, the processes ξ̃(t) = ht(ξ(t)) = g̃t ◦ ΦA(ξ) and
s̃j(t) = ht(sj(t)) = g̃t ◦ ΦA(sj) are time-changed into

ξ̌(t) = ξ̃(ã−1(2t)) and šj(t) = s̃j(ã
−1(2t)), 1 ≤ j ≤ 3N, t < τ̌ .

(1.16)

Set ǧt = g̃ã−1(2t) and Ψ̌t = Ψ̃ã−1(2t).
It follows from (1.6), (1.7) and the joint continuity of h′

t(z) that,
for T ∈ (0, τ̌), ǧt(z) is continuously differentiable in t ∈ [0, T ] and

dǧt(z)

dt
= −2πΨ̌t(ǧt(z), ξ̌(t)), ǧ0(z) = z ∈ D̃ \ F̌t. (1.17)
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Just as the K-L slit equation for s(t) follows from the Komatu-Loewner
equation,
the following equation for š(t) follows from the equation (1.17).

.

Lemma 1.3

.

.

.

. ..

. .

It holds under P(ξ,s) that

šj(t) = ΦA(sj) +

∫ t

0

b̌j(š(s)− ̂̌ξ(t))ds, t ∈ [0, τ̌), 1 ≤ j ≤ 3N,

(1.18)
where b̌j(s) is defined as in Lecture 1 with Ψs being replaced by Ψ̌s.



. . . . . .

. . . . . . . . . . . . . . . . . .

Locality property of SKLE Some overview

Let {Ft} be a SKLEα,b. Since {Ft} depends also on the initial value
(ξ, s) for SDE (1.1)-(1.2),
we shall write SKLEα,b more precisely as SKLEξ,s,α,b occasionally.

Recall that, for an H-hull A ⊂ D(s), τA = inf{t > 0 : F t ∩A 6= ∅}.
Let {F̌t}{t<τ̌A} be the half-plane capacity reparametrization of the image

hulls {F̃t = ΦA(Ft)}{t<τA} specified by (1.15).

SKLEα,b is said to satisfy the locality property
if, for the SKLEξ,s,α,b {Ft} with an arbitrarily fixed (ξ, s) ∈ R× S and
for any H-hull A ⊂ D(s),
{F̌t, t < τ̌A} has the same distribution as SKLEΦA(ξ),ΦA(s),α,b restricted
to {t < τΦA(A)}.
Here SKLEα,b and SKLEΦA(ξ),ΦA(s),α,b can live on two different
probability spaces.
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In what follows, we assume that

α is a positive constant and b(ξ, s) = −bBMD(ξ, s).

Let Mt =
∫ t

0
h′
s(ξ(s))dBs. By (1.6), 〈M〉t =

∫ t

0
h′
s(ξ(s))

2ds = ã(t)/2.

Hence B̌t := Mã−1(2t) is a Brownian motion.

The seimi-martingale expression (1.14) of ξ̃(t) can be converted into

ξ̌(t) = ΦA(ξ(0)) + η(t)−
∫ t

0

bBMD(ξ̌(s), š(s))ds+ αB̌t, t ≤ τ̌ , (1.19)

where

η(t) =
α2 − 6

2

∫ t

0

ȟ′′
s (

◦
ξ (s)) · ȟ′

s(
◦
ξ (s))−2ds,

for ȟ′
s(z) := h′

ã−1(2s)(z), ȟ
′′
s (z) := h′′

ã−1(2s)(z) and
◦
ξ (t) := ξ(ã−1(2t)).

Note that since ht(z) is univalent in z on the region Gt, h
′
t(z) never

vanishes there.
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.

Theorem 1.4

.

.

.

. ..

.

.

SKLEα,−bBMD for a constant α > 0 enjoys the locality if and only if
α =

√
6.

Proof. “If” part. Assume that α =
√
6.

Then (1.19) is reduced to

dξ̌(t) = −bBMD(ξ̌(t), š(t))dt+
√
6 dB̌t. (1.20)

Thus {F̌t} is an increasing sequence of H-hulls associated with the
unique solution ǧt of the Komatu-Loewner equation (1.17), driven by
(ξ̌(t), š(t)), which is the unique solution of (1.20) and (1.18).

Therefore {F̌t}{t<τ̌A} is SKLEΦA(ξ),ΦA(s),
√
6,−bBMD

restricted to

{t < τΦA(A)}, yielding the ‘if’ part of the theorem.
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“Only if” part. Assume the locality of SKLEα,−bBMD . Then
{(ξ̌(t)), š(t); t ∈ (0, τ̌A)} has the same distribution as the solution
{(ξ̄(t), s̄(t)); t ∈ [0, τ̄ΦA(A))} of the equation

ξ̄(t) = ΦA(ξ)−
∫ t

0

bBMD(s̄(s)− ̂̄ξ(s))ds+ αB̄t (1.21)

for some Brownian motion B̄t coupled with the equation (1.18) with
(ξ̄(t), s̄(t)) in place of (ξ̌(t), š(t)).
Then we see from (1.19) that ξ̌(t) is, under the Girsanov transform
generated by the local martingale −α−1η(t) dB̌t, locally equivalent in law
to ξ̄(t). It follows that η(t) = 0, t < τ̌ , almost surely, and accordingly

(α2 − 6)

∫ ã−1(2t)∧τ

0

h′′
s (ξ(s))ds = 0, t > 0. (1.22)

Dividing (1.22) by ã−1(2t) and then letting t ↓ 0, we get
(α2 − 6)Φ′′

A(ξ) = 0 for every ξ ∈ ∂H \A because we can check that
h′′
s (z) converges to Φ′′

A(z) locally uniformly as s ↓ 0.
If α2 6= 6, then Φ′′

A(ξ) = 0 for every ξ ∈ ∂H \A, This would imply that
ΦA is an identity map, which is impossible unless A = ∅.
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Some overview

1. The chordal SLEκ can be viewed as a special case of SKLEα,b for the
upper half-plane H with no slit and for α =

√
κ, b = 0.

In this case, bBMD = 0 and Theorem 1.4 in the above says that SLEκ

enjoys the locality if and only if κ = 6.

Also Theorem 1.1 reads

dg̃0s(z)

ds
=

2|h′
s(ξ(s)|2

g̃0s(z)− hs(ξ(s))
(2.1)

for the canonical Riemann map g̃0s(z) associated with the image hulls

{F̃ 0
t = ΦA(F

0
t )} of SLEκ {F 0

t }.

The locality property of SLE6 was first observed
by G. Lawler, O. Schramm and W. Werner.
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The present definition of the locality for SKLE is basically taken from

[LSW] G. Lawler, O. Schramm and W. Werner, Conformal restriction: the chordal

case, J. Amer.Math. Soc. 16 (2003), 917-955

But the present proof may be new even for the SLE as its special case in
the following sense.

The generalized Loewner equation (2.1) is well-known to hold in the right
time-derivative sense:
See page 96 of

[L] G.F. Lawler, Conformally Invariant Processes in the Plane, Mathematical Surveys

and Monographs, AMS, 2005
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In order to make it a genuine ODE,
we need to verify the continuity of g̃t(z) in t,

which is certainly valid if κ ≤ 4 because {Ft} is then generated by a
simple curve as has been shown in

[RS] S. Rohde and O. Schramm, Basic properties of SLE, Ann. Math. 161 (2005),

879-920

and so is {F̃t}, yielding the left continuity of g̃t(z) (Section 6 of [CFR]).

The only available way to prove such continuity property for SLEκ with
κ > 4 seems to be using an analogous but simpler version of the proof of
Step I in the above.

However this method does not seem to work for the perturbations of
domains by a locally real conformal map formulated in §4.6.1, §6.3 of [L]
and for an exponential map relating the chordal SLE to the radial SLE in
§4.6.3, §6.5 of [L].
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2. The joint continuity of ht(z), h
′
t(z), h

′′
t (z) derived from that of g̃t(z)

in Step III
is crucial to legitimate frequent usages of a generalized Itô formula
presented in Exercise (3.12) of

[RY] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer,

1999

Incidentally, in this Exercise, 4 conditions i), ii), iii), iv) on an adapted
random function g(x, ω, u) are required for the validity of a generalized
Itô formula for its composite with a continuous semi-martingale.
But, additional conditions
ii)’ gxx(x, ω, u) is locally bounded in (x, u) a.s.
iv)’ gu(x, ω, u) is locally bounded in (x, u) a.s.
should be added to ii) and iv), respectively.
(by private communications with Masanori Hino)

The joint continuity of gu(x, u), gx(x, u).gxx(x, u) suffices accordingly.
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3. An SKLE is produced by a pair (ξ(t), s(t)) of a motion ξ(t) on ∂H
and a motion s(t) of slits via Komatu-Loewner equation,
while an SLE is produced by a motion on ∂H alone via Loewner equation.
They are subject to different mechanisms.
Nevertheless. as a family of random growing hulls,
It can be shown that SKLE√

6,−bBMD
after a reparametrization has the

same distribution as chordal SLE6.
Furthermore, it can be shown that when α is constant,
SKLEα,b up to some random hitting time and modulo a time change has
the same distribution as the chordal SLEα2 under suitable Girsanov
transform.
In view of [RS], SKLEα,b {Ft} for a constant α is generated by a
continuous curve γ in the sense that H \ Ft coincides
with the unbounded connected component of H \ γ[0, t] for each t > 0
a.s,
and γ is simple for 0 < γ ≤ 4.
See

[CFS] Z.-Q. Chen, M, Fukushima and H. Suzuki, On some relations of stochastic

Komatu-Loewner evolutions to SLE, Preprint
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4. Perturbations of an SKLE on a multiply connected domain can not be
controlled by those of an SLE.

In order to establish the locality of SKLE√
6,−bBMD

,
we therefore need to work, as in the proof of the ‘if’ part of Theorem 1.4
with perturbations of standard slit domains.

It can not be obtained as a consequence of the locality of the chordal
SLE6.

By the same reason, the locality of radial SLE6 does not directly follow
from that of chordal SLE6.

5. ’Only if’ part of Theorem 1.4 seems to be new not only for SKLE but
for SLE.
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6. We say that SLEκ {F 0
t } has the restriction property if

for any H-hull A, conditioned on τA = ∞, {F 0
t } has the same

distribution as its image hulls {ΦA(F
0
t )}.

It has been shown SLE8/3 enjoys the restriction property
but does not for κ 6= 8/3, 0 < κ ≤ 4.

But we can hardly expect a straightforward generalization of the
restriction property to SKLE√

8/3,−bBMD

due to the aftereffect of the second order BMD-domain constant

cBMD(ξ,D) = 2π lim
z→ξ

(Ψ′
D(z, ξ)− 1/[π(z − ξ)2]).
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7 For 0 < κ ≤ 4, SLEκ is generated by a simple curve
and we may consider conditional processes by specifying its end point.
D. Zhan

[Z] D. Zhan, Restriction properties of annulus SLE, J. Stat. Phys. 146(5)(2012),

1026-1058

discusses the restriction property and the reversibility for annulus SLEκ

specified this way.
G. Lawler

[L2] G. F. Lawler, Defining SLE in multiply connected domains with the Brownian

loop measure, arXiv:1108.4364 2011

considers SLE’s for more general multiply connected domains using the
Brownian loop measure and compares it with Zhan’s one in annulus case.

8 Y. LeJan

[Le] Yves LeJan, Markov paths, loops and fields, École d’Été de Probabilités de

Saint-Flour, 2008, Lecture Notes in Math. 2026, Springer, 2011

considers loop measures for a general symmetric Markov chain and
mention a prospect to extend them to
a general symmetric Markov process with Green density function.
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