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Locality property of SLE

H: upper half plane
A ⊂ H is called an H-hull if A is a bounded closed subset of H and
H \A is simply connected
Given an H-hull A, there exists a unique conformal map f
(one-to-one analytic function) from H \A onto H
satisfying a hydrodynamic normalization

f(z) = z +
a

z
+ o(1/|z|), z → ∞.

Such a map f will be called a canonical Riemann map from H \A
and a is called the half-plane capacity of f .
For γ = {γ(t) : 0 ≤ t < tγ}: a Jordan arc with
γ(0) ∈ ∂H, γ(t) ∈ H, ∀t < tγ ,
let g0t be the canonical Riemann map from H \ γ[0, t]
with the half-plane capacity at.

See Figure 2 (with no slit)
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Repametrize γ as at = 2t.

g0t then satisfies a simple ODE called the chordal Loewner equation

dg0t (z)

dt
= −2πΨH(g0t (z), ξ(t)) for ΨH(z, ξ) = − 1

π

1

z − ξ
, z ∈ H, ξ ∈ ∂H.

(1.1)
Here ξ(t) = g0t (γ(t)), which is a continuous function taking value in the
boundary ∂H.

ΨH(z, ξ) may be called the complex Poisson kernel for ABM (absorbing
Brownian motion) on H because

=ΨH(z, ξ) =
1

π

y

(x− ξ)2 + y2
. z = x+ iy,
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Conversely, given a continuous function ξ(t), t ≥ 0, on ∂H, the Cauchy
problem of the ODE

dg0t (z)

dt
= −2πΨH(g0t (z), ξ(t)) g00(z) = z, z ∈ H, (1.2)

admits a unique solution {g0t (z), t ∈ [0, t0z)}
with maximal time interval of existence [0, t0z).

If we let
F 0
t = {z ∈ H : t0z ≤ t},

then F 0
t is an H-hull and g0t (z) becomes

a canonical Riemann map from H \ F 0
t .

The family of growing hulls {F 0
t } is called

the Loewner evolution driven by the continuous function ξ(t).
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Let B(t), t ≥ 0, be the Brownian motion on ∂H and κ be a positive
constant.
The family of random growing hulls {F 0

t } driven by the path of
B(κt), t ≥ 0, is called a stochastic Loewner evolution (SLE)
and denoted by SLEκ.

Let {F 0
t } be SLEκ. Consider an H-hull A and the associated canonical

Riemann map ΦA from H \A. Define the image hull by

F̃ 0
t = ΦA(F

0
t ), t < τ,

where
τ = inf{t > 0 : F

0

t ∩A 6= ∅}.

We say that SLEκ {F 0
t } has the locality property

if the image hulls {F̃ 0
t } has the same distribution as {F 0

t } on t < τ
under a certain reparametrization for any H-hull A.

See Figure 3 with no slit and Figure 1 for the relation to the percolation
exploration process.
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Early in 2000s, G. Lawler, G. Schramm and W. Werner observed that
SLE6 enjoys the locality property.

Basically this can be proved by identifying a time change of the driving
process ξ̃(t) of the image hulls {F̃ 0

t } with B(6t).

But, in doing so rigorously, we need to verify the joint continuity in (t, z̃)

of the canonical Riemann maps associated with {F̃ 0
t },

that seems to be left unconfirmed
but can be readily shown as will be explaned in the next slide.

In these lectures, we will characterize the locality property of
stochatic Komatu-Loewner evolutions for multply connected domains
by establishing the stated continuity in this generality using BMD.
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See figure 3. The superscript 0 indicates no slit.
Since h0

t (z) is the canonical Riemann map from H \ g0t (A),
=(h0

t (z)− z) is a bounded harmonic function on H \ g0t (A)
and =h0

t (z) = 0, z ∈ ∂g0t (A). Therefore

=h0
t (z) = =z − EH

z

[
=ZH

σ
g0t (A)

; σg0
t (A) < ∞

]
,

for the absorbing Brownian motion(ABM) (ZH
t ,PH

z ) on H. Define

q0t (z) = =g0t (z)− EH
z

[
=g0t (ZH

σA
);σA < ∞

]
, z ∈ H \ F 0

t \A,

which is jointly continuous in (t, z)
because g0t (z) is a solution of an ODE (1.2).
Due to the invariance of the absorbing BM under the conformal map g0t ,
we have =h0

t (g
0
t (z)) = q0t (z).

Since g̃0t = h0
t ◦ g0t ◦ Φ−1

A , we obtain for each T ∈ (0, τ)

=g̃0t (z) = q0t (Φ
−1
A (z)), t ∈ [0, T ], z ∈ H \ F̃ 0

T \ Ã,
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Stochastic Komatu-Loewner evolution (SKLE)

A domain D ⊂ H is called a standard slit domain if

D = H \ {C1, · · · , CN}

where Ck, 1 ≤ k ≤ N, are mutually disjoint line segments in H
parallel to ∂H.
Denote by D the collection of all labelled standard slit domains.
Given D ∈ D and an H-hull A ⊂ D, there exists a unique conformal map
from D \A onto another stadard slit domain
satisfying a hydrodynamic normalization.
We call such a map the canonical conformal map from D \A We fix
D ∈ D and consider a Jordan arc

γ : [0, tγ) → D, γ(0) ∈ ∂H, γ(0, tγ) ⊂ D, 0 < tγ ≤ ∞.

For each t ∈ [0, tγ), let gt(z) be the canonical conformal map from
D \ γ[0, t].
The arc γ can be reparametrized in a way that the half-plane capacity of
gt equals 2t.
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Define
ξ(t) = gt(γ(t)) (∈ ∂H), 0 ≤ t < tγ

that is continuous in t.

See Figure 2.

Analogously to the chordal Loewner equation (1.1),
the family gt(z) of conformal maps satisfies
the chordal Komatu-Loewner equation

dgt(z)

dt
= −2πΨDt(gt(z), ξ(t)), z ∈ D \ γ[0, t]. (2.1)

where ΨDt(z, ξ) is the BMD-complex Poisson kernel
for the image domain Dt = gt(D) ∈ D
that will be explained in the next three slides.
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Let Z0 be the absorbing Brownian motion on D. Let

D∗ = D ∪K∗, K∗ = {c∗1, · · · , c∗N}

be the space obtained from H by identifying every point of each slit Ck

as a single point c∗k, 1 ≤ k ≤ N with the quotient topology.
The Lebesgue measure m on D is extended to D∗ by letting m(K∗) = 0.

As has been shown in §7.7 of

[CF1] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Changes,

and Boundary Theory, Princeton University Press, 2012

there exists uniquely a diffusion process Z∗ on D∗ that is
an m-symmetric extension of Z0 with no sojourn nor killing on K∗.

We call Z∗ the Brownian motion with darning (BMD) for D.
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In the one slit case (N = 1), the unique existence of BMD was
established by

[FT] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric

diffusions, Ann.Inst.Henri Poincaré Probab.Statist. 41(2005), 419-459

for a general symmetric diffusion and actually BMD was constructed by
using Itô’s Poisson point process of excursions around the slit,

and it has been identified with Lawler’s excursion reflected Brownian
motin (ERBM) by

[CF2] Z.-Q. Chen and M. Fukushima, One point reflection, Stochastic Process Appl.

125 (2015), 1368-1393

Let Z∗ = {Z∗
t , ζ

∗,P∗
z} be the BMD on D∗ = D ∪ {c∗1, · · · , c∗N}



. . . . . .

. . . . . .

Locality property of SLE

. . . . . . . . . . . . .

Stochastic Komatu-Loewner evolution (SKLE)

A function u on D∗ is called BMD-harmonic if u is continuous on D∗

and satisfies the usual averaging property that
for any relatively compact open set O1 with O1 ⊂ D∗,

E∗
z

[
|u(Z∗

τO1
)|
]
< ∞ and E∗

z

[
u(Z∗

τO1
)
]
= u(z) for every z ∈ O1.

Any BMD-harmonic function u is not only harmonic on D in the ordinary
sense but also it admits an analytic function f on D with =f = u
uniquely up to an additive real constant.
For D ∈ D, let K∗

D(z, ξ), z ∈ D, ξ ∈ ∂H, be the Poisson kernel
expressiong any bounded BMD-harmonic function u for D as

u(z) =

∫
∂H

K∗
D(z, ξ)u(ξ)dξ, z ∈ D.

Since K∗
D(z, ξ) is BMD-harmonic in z, there exists a unique analytic

function ΨD(z, ξ) in z ∈ D with =ΨD(z, ξ) = K∗
D(z, ξ)

under the normalization condition limz→∞ ΨD(z, ξ) = 0.

ΨD(z, ξ) is called the BMD-complex Poisson kernel for D ∈ D.
ΨD(z, ξ) admits an explicit expression in terms of
the Green function of D.
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We return to the chordal Komatu-Loewner equation (2.1) induced by the
Jordan arc γ.
γ(t) induces not only the motion of ξ(t) = gt(γ(t)) ∈ ∂H
but also the motion of the image domain Dt = ft(D).

Denote by zj(t) = xj(t) + iyj(t), z′j(t) = x′
j(t) + iyj(t), the left and

right endpoints of the j-th slit Cj(t) of the image domain Dt. Then
we can derive from the Komatu-Loewner differential equation (2.1)

d
dtyj(t) = −2π=ΨDt(zj(t), ξ(t)),
d
dtxj(t) = −2π<ΨDt(zj(t), ξ(t)),
d
dtx

′
j(t) = −2π<ΨDt(z

′
j(t), ξ(t)), 1 ≤ j ≤ N.

(2.2)

which is called the K-L slit equation.

(2.2) particularly means that the motion of Dt is determined
by the motion of ξ(t).
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For D, D̃ ∈ D, define their distance d(D, D̃) by

d(D, D̃) = max
1≤i≤N

(|zi − z̃i|+ |z′i − z̃′i|),

where, for D = H \ {C1, C2, · · · , CN},
It is convenient to introduce an open subset S of the Euclidean space
R3N by

S = {(y,x,x′) ∈ R3N : y > 0, x < x′,

either x′
j < xk or x′

k < xj whenever yj = yk, j 6= k}.

By the correspondence

zk = xk + iyk, z′k = x′
k + iyk, 1 ≤ k ≤ N,

the space D can be identified with S as a topological space.
The point in S (resp. D) corresponding to D ∈ D (resp. s ∈ S) will be
denoted by s(D) (resp. D(s)).
{Dt : 0 ≤ t < tγ} is a one parameter subfamily of D.
s(Dt) is designated by s(t).
The K-L equation (2.1) can be rewritten as

dgt(z)

dt
= −2πΨs(t)(gt(z), ξ(t)), g0(z) = z ∈ D. (2.3)
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Due to the invariance of BMD under the shift map in x-direction,
The K-L slit equation (2.2) can be rewritten as

sj(t)− sj(0) =

∫ t

0

bj(s(s)− ξ̂(s))ds, t ≥ 0, 1 ≤ j ≤ 3N, (2.4)

where

bj(s) =


−2π=Ψs(zj , 0), 1 ≤ j ≤ N,

−2π<Ψs(zj , 0), N + 1 ≤ j ≤ 2N, s ∈ S.

−2π<Ψs(z
′
j , 0), 2N + 1 ≤ j ≤ 3N.

(2.5)

and ξ̂ denotes the 3N -vector with the first N -componets equal to 0 and
the next 2N -components equal to ξ.
Let us consider the next locall Lipschitz condition for a real function
f = f(s) on S.

(L) For any s(0) ∈ S and any bounded open interval J ⊂ R,
there exist a neigborhood U(s(0)) ⊂ S of s(0) and a constant L > 0 with

|f(s(1)− ξ̂)−f(s(2)− ξ̂)| ≤ L |s(1)−s(2)| ∀s(1), s(2) ∈ U(s(0)) ∀ξ ∈ J.
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.

Proposition 2.1

.

.

.

. ..

.

.

(i) bj(s), 1 ≤ j ≤ 3N, satisfies the condition (L).
(ii) Given any real continuous function ξ(t) on [0,∞) and any s(0) ∈ S.
there exists a unique solution s(t) of the K-L slit equation (2.4) satisfying
s(0) = s(0).

(i) is a consequence of the Lipschitz continuity of the BMD complex
Poisson kernel ΨD shown in

[CFR] Z.-Q.Chen, M. Fukushima and S. Rohde, Chordal Komatu-Loewner equation

and Brownian motion with darning in multiply connected domains, to appear in Trans.

Amer. Math. Soc.

(ii) follows from (i).
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For a given real continuous function ξ(t), t ∈ [0,∞),
let s(t), t ∈ [0, ζ) be the unique solution of (2.4)
with the maximal interval [0, ζ) of existence.

Writing Dt = D(s(t)) ∈ D, t ∈ [0, ζ), we set

G =
∪

t∈[0,ζ)

{t} ×Dt, (2.6)

which is a subdomain of [0, ζ)×H as t 7→ Dt is continuous.

We then substitute (ξ(t), s(t)) into the Komatu-Loewner equation (2.1)
and consider the Cauchy problem

d

dt
z(t) = −2πΨs(t)(z(t), ξ(t)), z(0) = z ∈ D(= D0 = D(s(0)). (2.7)
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.

Theorem 2.2

.

.

.

. ..

.

.

(i) For each z ∈ D := D(s(0)), the equation (2.7) admits a unique
solution gt(z), t ∈ [0, tz), passing through G. Here [0, tz), tz > 0, is its
maximal interval existence. Further

lim
t↑tz

=gt(z) = 0, If tz < ζ then lim
t↑tz

|gt(z)− ξ(tz)| = 0.

(ii) Let Ft = {z ∈ D : tz ≤ t}, t > 0 Ft is an H-hull..
(iii) gt is a canonical conformal map from D \ Ft with the half-plane
capacity 2t.
(iv) The increasing family {Ft} of H-hulls is right continuous with limit
ξ(t) in the following sense:∩

δ>0

gt(Ft+δ \ Ft) = {ξ(t)} t ∈ [0, ζ). (2.8)
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The increasing family of the growing H-hulls {Ft} in Theorem 2.2 is
called the Komatu-Loewner evolution driven by a continuous function
ξ(t).

By making an analogous consideration to Schramm, we can verify that,
as a driving function ξ(t), the following specific choice of a random
process is natural:
A function f(s) on the space S is called homogeneous with degree 0
(resp. −1) if f(cs) = f(s) (resp. f(cs) = c−1f(s)) for every c > 0.
For given real homogeneous functions α, b on S with degree 0, −1,
respectively, both satisfying the Lipschitz condition (L),
we consider the stochastic differential equation

ξ(t) = ξ +

∫ t

0

α(s(s)− ξ̂(s))dBs +

∫ t

0

b(s(s)− ξ̂(s))ds, (2.9)

(Bs is a standard Brownian motion),
coupled with the K-L slit equation (2.4)

sj(t)− sj(0) =

∫ t

0

bj(s(s)− ξ̂(s))ds, t ≥ 0, 1 ≤ j ≤ 3N.
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It is known that bj(s) defined by (2.5) is homogeneous with degree −1
and satisfies the condition (L) by [CFR].

Let (ξ(t), s(t)) be the strong solution of the system of the equations
(2.9) and (2.4).

The K-L evolution driven by ξ(t) will be called
the stochastic K-L evolution driven by the solution of the SDE (2.9),
(2.4) and denoted by SKLEα,b.

The results of this section are taken from

[CF3] Z.-Q. Chen and M. Fukushima, Stochastic Komatu-Loewner evolution and

BMD domain constant, arXiv:1410.8257vl
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