Locality property and a related continuity problem for SLE and SKLE

Masatoshi Fukushima(Osaka) a joint work with Zhen-Qing Chen(Seattle)

The Schramm Loewner evolution SLE_{κ} for $\kappa > 0$ is a family of random growing hulls $\{F_t\}$ in the upper half-plane \mathbb{H} driven by $\xi(t) = B(\kappa t)$ through the Loewner differential equation, where $B(t), t \geq 0$, is the standard Brownian motion on the boundary $\partial \mathbb{H}$. Early in the 2000s, G. Lawler, G. Schramm and W. Werner observed that SLE_6 enjoys the locality property in the sense that, if \mathbb{H} is perturbed away from the hulls, the family of perturbed hulls $\{\tilde{F}_t\}$ under a due reparametrization has the same distribution as the unperturbed one $\{F_t\}$ (see Figure 1 for percolation). This property can be shown by comparing the driving process $\tilde{\xi}(t)$ of $\{\tilde{F}_t\}$ with B(6t) in principle.

But, in doing so rigorously, one need to verify the joint continuity in (t, \tilde{z}) for the family of conformal maps $\tilde{g}_t(\tilde{z})$ associated with $\{\tilde{F}_t\}$, that seems to be left unconfirmed. In this lectures, we will characterize the locality property of stochastic Komatu-Loewner evolutions for multiply connected domains by establishing the stated continuity in this generality.

A standard slit domain is a domain of the type $D = \mathbb{H} \setminus \bigcup_{j=1}^{N} C_j$ for mutually disjoint line segments $C_j \subset \mathbb{H}$ parallel to $\partial \mathbb{H}$. Consider a set $S \subset \mathbb{R}^{3N}$ representing the collection of all labelled slits. Let $(\xi(t), \mathbf{s}(t)) \in \partial \mathbb{H} \times S$ be the strong solution of an SDE such that a diffusion coefficient α and a drift coefficient b of $\xi(t)$ are homogeneous functions of degree 0 and -1, respectively, both satisfying a local Lipschitz continuity condition, while each component of $\mathbf{s}(t)$ has only a drift coefficient determined by the trace to the slits of the *BMD complex Poisson kernel* that is known to be locally Lipschitz continuous.

A stochastic Komatu-Loewner evolution denoted by $SKLE_{\alpha,b}$ is a family of random growing hulls $\{F_t\}$ in a standard slit domain D driven by $(\xi(t), \mathbf{s}(t))$ through the Komatu-Loewner differential equation. Let b_{BMD} be the *BMD*-domain constant that describes the discrepancy of a standard slit domain from \mathbb{H} relative to BMD (Brownian motion with darning).

Theorem 0.1 SKLE_{$\alpha,-b_{BMD}$} for a positive constant α enjoys the locality property if and only if $\alpha = \sqrt{6}$.

We use a probabilistic expression of $\Im h_t(z)$ in terms of the BMD and the absorbing Brownian motion (ABM) on D_t and combine it with the conformal invariance of BMD and ABM to obtain an expression of $\Im \tilde{g}_t(\tilde{z})$ in terms of $g_t(z)$ (see Figure 3). Note that $g_t(z)$ is jointly continuous as the solution of ODE (KL-equation). This is the way to prove the desired joint continuity of $\tilde{g}_t(\tilde{z})$, which additionally yields the joint continuity of $h_t(z), h'_t(z), h''_t(z)$. The last property is crucial to legitimate a use of a generalized Itô formula on a composite of a semi-martingale and a random smooth function formulated by Revuz-Yor in getting an explicit semi-martingale expression of the driving process $\tilde{\xi}(t)$ of the image hulls $\{\tilde{F}_t\}$.

Some open problems related to SKLE will be also discussed.