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A control problem

We consider the following controlled system of SDE

dY: = XedW; + d|IA]|; — Bdt,

where 8 > 0 and y # 0 are constants, W is a standard Brownian
motion and ||A|| is the total variation of our control A that we require
to be an adapted process of finite variation.

The problem, motivated by a financial practice of hedging under
transaction costs, is to minimize

T T
lim sup = E[Y%] = I|m 'SUp = E[ (Xr2 —2BYy)dt + 2f Yid|IAlle].
0
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1dim ? 2dim ?



Example: Bang-bang control

An example of control:
dA; = —asgn(X;)dt
with @ > 0. Then

dX; = ydW; — asgn(X;)dt
dYt = Xtth + (oz —ﬁ)dt

In this case,

—E[Y%] —E[f X2dt] + 2(a E[f Xidt] + (a

)T—>oo

unless @ = B. The erogodic disribution of X is Laplace (two-sided

exponetial).



Example: Singular control
Another example of control:

dA; = dL; — dR;,

where L and R are nondecreasing processes such that

t t
erf 1(x,=-bydLt, erf 11 x,=b)dRt
0 0

and |X;| < b, b > 0. Such a control exists, as the solution of the
Skorokhod equation

dXt = ’}/th + st - th

Then, the erogodic distribution of X is U[-b, b], and

T
YT :f XidW; + Lt + Ry — BT.
0



A class of controls

In this talk, we focus on a restricted class of control
dA = —sgn(X;)y?c(X;)dt + dL; — dRy, (1)

where c is a nonnegative continuous even function on an interval
[-b,b], b > 0and L and R are nondecreasing processes with

st = 1{Xt=—b}ste th = 1{X,:b}th
which keep X stay in [-b, b]. Now our control is (b, c).

The idea of the control is to push X towards 0:

1) The abs. conti. part of A determined by ¢ pushes X regularly.

2) The other parts are active only when X reaches the boundary of
[-b, b] and push X to prevent it from going out of the interval.



Well-defined ?

Such a control exists; in fact, there exists a pathwise unique strong
solution (X, L, R) of a Skorokhod SDE

dX; = ydW; — sgn(X;)y?c(X;)dt 4 dL; — dR;

on [-b, b] when x  —sgn(x)c(x) is one-sided Lipschitz. The
control A is then well-defined by (1).

The optimal control in this restricted class is probably suboptimal
for the original problem; however it has a certain advantage in its
easy implementation. Also this type of control strategies has
appeared in a related context of optimal hedging.

Now, no more sure about the validity of the dynamic programming
principle due to that the control A refers only to the spot value of X.
A (formal) HJB type equation is far from standard forms.



Remind

The system is

dX; = ydW; — sgn(X;)y?c(X;)dt 4 dL; — dR;,
dY; = XedW; + y2c(X;)dt + dL; + dR; — Bdt,

where L and R are nondecreasing processes with
dL; = 1yx,=-pydLs, dR; = 1;x,=pydR;
which keep X stay in [-b, b].

The goal is to find (b, ¢) which minimizes

1
lim sup 7_E[Y$],

T—o0

where b > 0, ¢ : [-b, b] — [0, >); an even continuous function.



A probabilistic approach

Theorem: 1) As T — oo,

%_(YT _§P°T) - N(0, Q)

in law, where

2 b X
6% = y; -B, a=2 fo g(x)dx. g(x) = exp {—2 fo C(y)dy}

and



1
lim —=E[(YT - 6°T)2] = QP~.
Tinoo T [( T-0 ) ] Q

f b,c _ )/)

where

0 if —2<x< 1,
4 (x+2)2(x-1)
3 3(4—x) if1<x<2,

B2 ifixz2,
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Proof of the convergence is...
standard and not difficult.

Denoting by £ the generator of X, we have
1 1 , ,
F.LH:C—E, H'(-b) = -H'(b) =1,

—rix

where H(x) = |~ h(y)dy. Then,

t t
0 0

=) = HO) + [ 06 =R ) + (2 - ).

and so,

__ sbc NL T _ ’
(Yr=2%T)~ 1 fo (Xe — yH'(Xe))dWe.

1
N



Martingale CLT: If M" is a sequence of continuous semimartingale
with (M™yr — Q, then M?ﬂ — N(0,Q).

Therefore, it suffices to show

T b
Frieg [ 0xeds =3 [ #0a(ax -0

b

for all integrable f, which is also easy to see: let

1 w9 4 1 b
vin = [ 5 [ (1005 [ rtoatxnax) ayayaz.

b
LV=fo é L F)g(x)dx, W (=b) = W(b) =0,

and so, Fr = {W(Xr) = W(Xo) — y ] W(X:)dWs} /T = 0.



Minimization
The mathematically challenging part is the minimization of Q?-:

QP = S‘fo‘b(x — yh(x))2g(x)dx — min

under 6°¢ = 0, where (recall)

h(x) = gfx) [} e - 1)g(y)dy,

:——,B a_2f g(x

and g is a speed measure density:

g(x) =exp {—2 j; ' C(y)dy}-



Lemma: For each (b, c), there corresponds a unique increasing
convex C? function y on [0, 1] with y(0) = 0, y’(0) = a/2 such that

2

1
Q* =y = [ (y(u)+y+ ?(u—w’(u)) au.

Proof: We can show that for all x € (0, b),

/ 2 _ h(x)+2/a
h(x)> -1, H(x)2-—. c(x) = 2(1 + h(x))

and h(b) = —1. Therefore,

o 2 (Pl=yh()? [ 2 [ dy
@ ‘afo 1+ h(x) exp{ afo 1+h(y>}dx

=2 [+ 901 - x 2ot

a

where t = [ =4 Put y(u) = x(t) with t = ~3 log(1 - u).



Key Lemma

Lemma: Let Y, be the set of the increasing convex functions y on
[0, 1] with y(0) = 0 and y’(0) = a/2. Then,

. o (a
ylenyfa nalyl =y n(y),
where (recall)
1 2
bl = [ (v 4y + Zw- 1y ) a

0 if —2<x<1,
n(x) = %—(Xif()z;” if1<x<2,

S(x+2)?  iflx|>2



Proof for the case -2 < a/y < 1: we shall prove infr;[y] = 0. The
key observation here is that

yo(u) = y(1 —u)y @2 —y
solves
a
2

and so, 174[yo] = 0. Note also that yy is convex iff a/y > —2. The
only problem is that yp(1) = co when a/y > 0 and so, yp ¢ Ya.

Yo(u) + + L (u=1)y5(u) = 0, ¥0(0) =0, ¥5(0) =

A solution is to chop yp(u) at u = 1 — € and linearly extrapolate it.
Then

nalyel = q(1 - €, yo(1 — €), y5(1 — €),2y/a) = O(e'2"),

where

q(v,w,z,6) = f1(w+z(u— v) + v+ 6(u-1)z)%du.



1.0

0.8

0.6

0.4

0.2

0.0



An important idea for the case 1 < a/y < 2: For y € M, let
e(u) = (1 =)@ (y(u) +7).
Then, ¢(0) =y, ¢(1) = 0 and

V() 7+ 2L (= 1)y () = ~2L(1 - ) ()

By the Cauchy-Schwarz, for ug € [0, 1],

fu: ¢’ (u)du

o(up)? =

1 1
Sf (1—u)2‘a/7<p’(u)2duf(1—u)a/7‘2du.
Uo

Uo
Therefore,
! 2 2 4y? (a .
[ty 2=y ) aus 2 (22 1) 0-w) 2y
U

0 Y

In particular, infna[y] > 0.



Proof for the case a/y > 2: Let y(u) = au/2.
Then, § € Y4 and naly] = ¥®n(a/y).

Suppose there exists y € Y, such that n4[y] < na[y]. Since a
convex function is approximated by piecewise linear convex
functions arbitrarily close, we can and do assume y itself is
piecewise linear without loss of generality.

Let up € (0, 1) be the last point where y’ jumps. Denote
yL = limypy, y'(u) and y!, = limyyy, y'(u). For z > y”, define y(-, z)
as

ifo<uc<
O fosusu
y(up) +z(u—up) ifup<u<i

(we define a family of piecewise linear convex functions)



Note that y(-,y’.) = y.

f (y(u, Z)+vy+ %(u -1y (y, z)) du = q(uo, y(up), z,2y/a)

and g is quadratic in z. Therefore easy to minimize in z. It turns
out that it is minimized by z = y’. In particular

naly( y2)] < maly(¥3)] = nalyl-

This means that by removing the last jump we get a smaller value.

We can repeat the same argument with y(-, y”) instead of y to get
an even smaller value. Continue, and eventually all jumps are
removed. The final product coincides with y, which contradicts how
y was chosen.



Optimal strategy

We can give an explicit sequence of controls (b, ¢,) with
§Pn-Cr = 0 such that QP converges to the infimum.

In fact, by, = ¥?/2B8 and ¢, = 0 when |y| > 28.

When |y| < 26 on the other hand, b, — o0 as n — oo and the
pointwise limit of c,(x) is given by

_y+2B 1 _2(y-p)+
G} = 2(y - 2/3/)7+IX|1'X'>' '= 4p-y
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ci(x, -1, 1)

10

—sgn(X)Co(X) 1y

1,8 =1
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—sgn(X)Cw(Xx) : y =03, =1

10




ci(x, 0.5, 1)

10

—sgn(X)Ce(Xx) : y =0.5,8=1
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ci(x, 1.1, 1)

10

—sgn(X)Cu(X) :y =1.1,=1
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—sgn(X)Cw(X) :y =19, =1
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ci(x, 1.97, 1)
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—sgn(X)Cw(X) 1y =1.97,8 =1
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Phase transitions

x =a/y | min. limitvar. limit optimal strategy
x<-2 | (a+2y)?/12 singular control
-2<x<0 0 regular control with natural boundary
0<x<1 0 regular control with no boundary
1<x<2 * regular control with no boundary
X>2 (a+2y)?/12 singular control

The phase transition at a/y = 1 results from the break of an
integrability property.

Ichihara (2015) for phase transitions in controlled Markov chains.

See Cai and Fukasawa (to appear in F&S) for more details.




