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A control problem

We consider the following controlled system of SDE

dXt = γdWt + dΛt ,

dYt = XtdWt + d∥Λ∥t − βdt ,

where β > 0 and γ , 0 are constants, W is a standard Brownian
motion and ∥Λ∥ is the total variation of our control Λ that we require
to be an adapted process of finite variation.

The problem, motivated by a financial practice of hedging under
transaction costs, is to minimize

lim sup
T→∞

1
T

E[Y2
T ] = lim sup

T→∞

1
T

E[

∫ T

0
(X2

t − 2βYt)dt + 2
∫ T

0
Ytd∥Λ∥t ].

1 dim ? 2 dim ?



Example: Bang-bang control

An example of control:

dΛt = −αsgn(Xt)dt

with α > 0. Then

dXt = γdWt − αsgn(Xt)dt ,

dYt = XtdWt + (α − β)dt .

In this case,

1
T

E[Y2
T ] =

1
T

E[

∫ T

0
X2

t dt] + 2(α − β)E[

∫ T

0
Xtdt] + (α − β)2T → ∞

unless α = β. The erogodic disribution of X is Laplace (two-sided
exponetial).



Example: Singular control
Another example of control:

dΛt = dLt − dRt ,

where L and R are nondecreasing processes such that

Lt =

∫ t

0
1{Xt=−b}dLt , Rt =

∫ t

0
1{Xt=b}dRt

and |Xt | ≤ b, b > 0. Such a control exists, as the solution of the
Skorokhod equation

dXt = γdWt + dLt − dRt .

Then, the erogodic distribution of X is U[−b , b], and

YT =

∫ T

0
XtdWt + LT + RT − βT .



A class of controls

In this talk, we focus on a restricted class of control

dΛ = −sgn(Xt)γ
2c(Xt)dt + dLt − dRt , (1)

where c is a nonnegative continuous even function on an interval
[−b , b], b > 0 and L and R are nondecreasing processes with

dLt = 1{Xt=−b}dLt , dRt = 1{Xt=b}dRt

which keep X stay in [−b , b]. Now our control is (b , c).

The idea of the control is to push X towards 0:
1) The abs. conti. part of Λ determined by c pushes X regularly.
2) The other parts are active only when X reaches the boundary of
[−b , b] and push X to prevent it from going out of the interval.



Well-defined ?

Such a control exists; in fact, there exists a pathwise unique strong
solution (X , L ,R) of a Skorokhod SDE

dXt = γdWt − sgn(Xt)γ
2c(Xt)dt + dLt − dRt

on [−b , b] when x 7→ −sgn(x)c(x) is one-sided Lipschitz. The
control Λ is then well-defined by (1).

The optimal control in this restricted class is probably suboptimal
for the original problem; however it has a certain advantage in its
easy implementation. Also this type of control strategies has
appeared in a related context of optimal hedging.

Now, no more sure about the validity of the dynamic programming
principle due to that the control Λ refers only to the spot value of X.
A (formal) HJB type equation is far from standard forms.



Remind

The system is

dXt = γdWt − sgn(Xt)γ
2c(Xt)dt + dLt − dRt ,

dYt = XtdWt + γ
2c(Xt)dt + dLt + dRt − βdt ,

where L and R are nondecreasing processes with

dLt = 1{Xt=−b}dLt , dRt = 1{Xt=b}dRt

which keep X stay in [−b , b].

The goal is to find (b , c) which minimizes

lim sup
T→∞

1
T

E[Y2
T ],

where b > 0, c : [−b , b]→ [0,∞); an even continuous function.



A probabilistic approach

Theorem: 1) As T → ∞,

1
√

T
(YT − δb ,cT)→ N(0,Qb ,c)

in law, where

δb ,c =
γ2

a
− β, a = 2

∫ b

0
g(x)dx, g(x) = exp

{
−2

∫ x

0
c(y)dy

}
and

Qb ,c =
2
a

∫ b

0
(x − γh(x))2g(x)dx,

h(x) =
2

g(x)

∫ x

0

(
c(y) − 1

a

)
g(y)dy.



2)

lim
T→∞

1
T

E[(YT − δb ,cT)2] = Qb ,c .

3)

inf
δb ,c=0

Qb ,c = γ2η

(
γ

β

)
,

where

η(x) =


0 if − 2 < x ≤ 1,
4
3
(x+2)2(x−1)

x3(4−x) if 1 < x < 2,
1
12(x + 2)2 if |x | ≥ 2.
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Proof of the convergence is...
standard and not difficult.

Denoting by L the generator of X, we have

1
γ2LH = c − 1

a
, H′(−b) = −H′(b) = 1,

where H(x) =
∫ |x |

0 h(y)dy. Then,

Yt =

∫ t

0
XsdWs + γ

2
∫ t

0
c(Xs)ds + Lt + Rt − βt

=H(Xt) − H(X0) +

∫ t

0
(Xs − γH′(Xs))dWs +

(
γ2

a
− β

)
t

and so,

1
√

T
(YT − δb ,cT) ≈ 1

√
T

∫ T

0
(Xs − γH′(Xs))dWs .



Martingale CLT: If Mn is a sequence of continuous semimartingale
with ⟨Mn⟩Tn → Q, then Mn

Tn
→ N(0,Q).

Therefore, it suffices to show

FT :=
1
T

∫ T

0
f(Xs)ds − 1

a

∫ b

−b
f(x)g(|x |)dx → 0

for all integrable f , which is also easy to see: let

Ψ(w) =
1
γ2

∫ w

0

2
g(|z|)

∫ z

−b

(
f(y) − 1

a

∫ b

−b
f(x)g(|x |)dx

)
g(|y |)dydz.

Then,

LΨ = f − 1
a

∫ b

−b
f(x)g(|x |)dx, Ψ′(−b) = Ψ(b) = 0,

and so, FT =
{
Ψ(XT ) −Ψ(X0) − γ

∫ T
0 Ψ′(Xs)dWs

}
/T → 0.



Minimization

The mathematically challenging part is the minimization of Qb ,c :

Qb ,c =
2
a

∫ b

0
(x − γh(x))2g(x)dx → min

under δb ,c = 0, where (recall)

h(x) =
2

g(x)

∫ x

0

(
c(y) − 1

a

)
g(y)dy,

δb ,c =
γ2

a
− β, a = 2

∫ b

0
g(x)dx

and g is a speed measure density:

g(x) = exp
{
−2

∫ x

0
c(y)dy

}
.



Lemma: For each (b , c), there corresponds a unique increasing
convex C2 function y on [0, 1] with y(0) = 0, y′(0) = a/2 such that

Qb ,c = ηa [y] :=
∫ 1

0

(
y(u) + γ +

2γ
a
(u − 1)y′(u)

)2

du.

Proof: We can show that for all x ∈ (0, b),

h(x) > −1, h′(x) ≥ −2
a
, c(x) =

h′(x) + 2/a
2(1 + h(x))

and h(b) = −1. Therefore,

Qb ,c =
2
a

∫ b

0

(x − γh(x))2

1 + h(x)
exp

{
−2

a

∫ x

0

dy
1 + h(y)

}
dx

=
2
a

∫ ∞

0
(x(t) + γ(1 − x′(t)))2e−2t/adt ,

where t =
∫ x(t)

0
dy

1+h(y) . Put y(u) = x(t) with t = −a
2 log(1 − u).



Key Lemma

Lemma: Let Ya be the set of the increasing convex functions y on
[0, 1] with y(0) = 0 and y′(0) = a/2. Then,

inf
y∈Ya
ηa [y] = γ2η

(
a
γ

)
,

where (recall)

ηa [y] =
∫ 1

0

(
y(u) + γ +

2γ
a
(u − 1)y′(u)

)2

du,

η(x) =


0 if − 2 < x ≤ 1,
4
3
(x+2)2(x−1)

x3(4−x) if 1 < x < 2,
1
12(x + 2)2 if |x | ≥ 2.



Proof for the case −2 < a/γ < 1: we shall prove inf ηa [y] = 0. The
key observation here is that

y0(u) = γ(1 − u)−a/2γ − γ

solves

y0(u) + γ +
2γ
a
(u − 1)y′0(u) = 0, y0(0) = 0, y′0(0) =

a
2

and so, ηa [y0] = 0. Note also that y0 is convex iff a/γ ≥ −2. The
only problem is that y0(1) = ∞ when a/γ > 0 and so, y0 < Ya .

A solution is to chop y0(u) at u = 1 − ϵ and linearly extrapolate it.
Then

ηa [yϵ ] = q(1 − ϵ, y0(1 − ϵ), y′0(1 − ϵ), 2γ/a) = O(ϵ1−a/γ),

where

q(v ,w, z, θ) =
∫ 1

v
(w + z(u − v) + γ + θ(u − 1)z)2du.
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An important idea for the case 1 < a/γ < 2: For y ∈ Ya , let

φ(u) = (1 − u)a/2γ(y(u) + γ).

Then, φ(0) = γ, φ(1) = 0 and

y(u) + γ +
2γ
a
(u − 1)y′(u) = −2γ

a
(1 − u)1−a/2γφ′(u).

By the Cauchy-Schwarz, for u0 ∈ [0, 1],

φ(u0)
2 =

∣∣∣∣∣∣
∫ 1

u0

φ′(u)du

∣∣∣∣∣∣2 ≤
∫ 1

u0

(1−u)2−a/γφ′(u)2du
∫ 1

u0

(1−u)a/γ−2du.

Therefore,∫ 1

u0

(
y(u) + γ +

2γ
a
(u − 1)y′(u)

)2

du ≥ 4γ2

a2

(
a
γ
− 1

)
(1−u0)

1−a/γφ(u0)
2.

In particular, inf ηa [y] > 0.



Proof for the case a/γ ≥ 2: Let ŷ(u) = au/2.

Then, ŷ ∈ Ya and ηa [y] = γ2η(a/γ).

Suppose there exists y ∈ Ya such that ηa [y] < ηa [ŷ]. Since a
convex function is approximated by piecewise linear convex
functions arbitrarily close, we can and do assume y itself is
piecewise linear without loss of generality.

Let u0 ∈ (0, 1) be the last point where y′ jumps. Denote
y′− = limu↑u0 y′(u) and y′+ = limu↓u0 y′(u). For z ≥ y′−, define y(·, z)
as

y(u, z) =

y(u) if 0 ≤ u ≤ u0

y(u0) + z(u − u0) if u0 < u ≤ 1

(we define a family of piecewise linear convex functions)



Note that y(·, y′+) = y.∫ 1

u0

(
y(u, z) + γ +

2γ
a
(u − 1)y′(y, z)

)2

du = q(u0, y(u0), z, 2γ/a)

and q is quadratic in z. Therefore easy to minimize in z. It turns
out that it is minimized by z = y′−. In particular

ηa [y(·, y′−)] < ηa [y(·, y′+)] = ηa [y].

This means that by removing the last jump we get a smaller value.

We can repeat the same argument with y(·, y′−) instead of y to get
an even smaller value. Continue, and eventually all jumps are
removed. The final product coincides with ŷ, which contradicts how
y was chosen.



Optimal strategy

We can give an explicit sequence of controls (bn, cn) with
δbn ,cn = 0 such that Qbn ,cn converges to the infimum.

In fact, bn = γ2/2β and cn = 0 when |γ| ≥ 2β.

When |γ| < 2β on the other hand, bn → ∞ as n → ∞ and the
pointwise limit of cn(x) is given by

c∞(x) =
γ + 2β

2(γ − 2βl)
1

γ + |x |1{|x |≥l}, l =
2(γ − β)+

4β − γ .



−sgn(x)c∞(x) : γ = −1.9, β = 1
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−sgn(x)c∞(x) : γ = −1.5, β = 1
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−sgn(x)c∞(x) : γ = −1, β = 1
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−sgn(x)c∞(x) : γ = 0.3, β = 1
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−sgn(x)c∞(x) : γ = 0.5, β = 1
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−sgn(x)c∞(x) : γ = 1, β = 1
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−sgn(x)c∞(x) : γ = 1.1, β = 1
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−sgn(x)c∞(x) : γ = 1.9, β = 1
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−sgn(x)c∞(x) : γ = 1.97, β = 1
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Phase transitions

x = a/γ min. limit var. limit optimal strategy
x ≤ −2 (a + 2γ)2/12 singular control
−2 < x < 0 0 regular control with natural boundary
0 < x < 1 0 regular control with no boundary
1 ≤ x < 2 ∗ regular control with no boundary

x ≥ 2 (a + 2γ)2/12 singular control

The phase transition at a/γ = 1 results from the break of an
integrability property.

Ichihara (2015) for phase transitions in controlled Markov chains.

See Cai and Fukasawa (to appear in F&S) for more details.


