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1. Summary

We consider an environment-dependent spatial model.

This random model is related to the stochastic interacting system.
We shall show that rescaled processes converge to a Dawson-
Watanabe superprocess. |

Formulation is due to setup of measure-valued branching Markov

processes.
The first step toward a transformation of model into a superprocess
is based upon construction of empirical measures.



2. Introduction

We shall introduce an environment-dependent random model.

Let Z¢ be a d-dimensional integer lattice.

Suppose that each site on Z¢ is occupied by all means by either
one of the two species.

At each random time, a particle dies and is replaced by a new one,

but the random time and the type chosen of the species are assumed

to be determined by the environment conditions around the parti-
cle.



3. Random Function

The random function 7 : Z¢ — {0,1} denotes the state at time ¢,
and each number of {0,1} denotes the label of the type chosen of
the two species. When we set ||y|| := max; y; for y = (11, . - ., ),
then we define

Ne=a4{y: 0<|glle < 7}, (1)

where 7 is a positive constant. For i = 0,1, let fi(z,n) be a fre-
quency of appearance of type ¢ in the neighborhood N, of z for 7.
In other words,

#ly: my)=1; y € Na}
f( ) fz(x "7) #Nm (2)




4. Dynamics of States

For non-negative parameters a;; > 0, the dynamics of 7 is defined
as follows. The state n makes transition 0 — 1 at rate

)\f1(f0 + a1 f1) 3)
Afi+fo '
and it makes transition 1 — 0 at rate
fo(f1 + a10f0). (4)

Afi+ fo



‘5. Interpretation of the Rate

The particle of type ¢ dies at rate f; + a;;f;, and is replaced in-
stantaneously by either one of the two species chosen at random,
according to the proliferation rate of type 0 and the interaction (=
the competitive result) with the particle of type 1. The density-
dependent death rate f; + ay;f; consists of the intraspecific and
interspecific competitive effects. We assume that competitive two
species possess the same intensity of intraspecific interaction. The
exchange of particles after death is described in the form being
proportional to the weighted density between the two species, ex-
pressed by a parameter X\. Assume that A > 1. The case of A =1
means that the contribution to a local appearance rate between
the two competitive species is equivalent. When A > 1, then it
means that the type 1 has a higher proliferation rate than the type
0. In this talk we shall discuss some convergence result of the
environment-dependent spatial models.



6. Scaling Rule

For brevity’s sake we shall treat a simple case A = 1 only below.
For IV = 1.2
let my € N, and we put £y := myV'N, and Sy := 7%/,
and Wy = (W4, ..., W) € (Z¢/My) \ {0} is defined as a random
vector satisfying

(i) L(Wy) = L(=Wn);

(ii) E(WLWY) = 6;;0%(> 0) (as N — o0);

(iii) {|Wy|?} (N € N) is uniformly integrable.
Here L£(Y) indicates the law of a random variable Y.



7. Rescaled Process

For the kernel py(z) := P(Wx/v/N =1z), z € Sy and n € {0,1}5,
we define the scaled frequency f7 as

fz‘N(man) = Z pN(y I x)l{n(y)=i}: (Z =0, 1)' (5)

YyESN

We denote by 7 the state determined by the scaled frequency
depending on o and py. As a matter of fact, the rescaled process
n : Sy 3 z— n(z) € {0,1} is determined by the following state
transition law, nemaly, it makes transition 0 — 1 at rate N f{¥ (f&¥+
ol FIV), or else it makes transition 1 — 0 at rate N f&' (f{¥ +af f&).
We denote the rescaled process 5’ by the symbol Res(py,al).



8. Empirical Measure

On this account, we may define the associated measure-valued pro-
cess (or its corresponding empirical measure) as

X == 3 @) ()

TESN

For the initial value X', we assume that
sup(XY,1) <00, X=Xy in MpRY) (N — o), (7)
N

where Mp(R?) is the totality of all the finite measures on RY,
equipped with the topology of weak convergence. For a finite mea-~
sure p € Mp(FE) with a topological space E, we use the notation
(1, p) = [z p(x)p(dz) for integral of a measurable function ¢ over
E with respect to a measure p on E. Note that the convergence in
(7) is that in the sense of weak convergence for measures.



9. Variational Derivative

Let Qp := D([0,00), Mr(R%)) be the Skorokhod space of all the
Mp(R%)-valued cadlag paths, and Q¢ := C([0, 00), Mr(R?)) be the
space of all the Mp(R%)-valued continuous paths, equipped with
uniform convergence topology on compacts. Cg’O(Rd) consists of
the infinitely differentiable functions on R? whose derivatives of
any order k are bounded and continuous. On the other hand, the
first order variational derivative of a function F' on Mp(E) relative

to u € Mp(F) is defined as

OF(w) _ . Flptr-8) — F(w) g
Su(z) rrl—+0+ r ’ ) ®)

if the limit in the right-hand side of (8) exists. In addition, the
second order variational derivative 62F (u)/du(z)? is defined as the
first order variational derivative of G(u) = 0F (1) /dp(z) if its limit
exists.




10. Generator of Superprocess |

We define the generator Ly as

L R PP o
coF ()= [ A5 Eu@n) + [ A B, @

where A[-] = E;A[] +6[-] and v > 0. If Mp(E)-valued con-
tinuous stochastic process X = {X;, P,} is a solution to the
(Lg, Dom(Ly))-martingale problem, then X = {X;, P,} is called
a Dawson-Watanabe superprocess, or DW superprocess in short,
where 2y > 0 is a branching rate, # € R is a drift term and o2 > 0
is a diffusion coefficient. More precisely, Xo = n € Mp(E) holds

P,-a.s., and for any function F = F(u) € Dom(Lo) defined on
Mp(E), |

ROX) - F(Xo) - [ LoF(X,)ds (10)

is a P -martingale.



11. Assumptions (1)

Let {&7} be a continuous time random walk with rate N and step
distribution py starting at a point z € Sy, and {£*} be a continu-
ous time coalescing random walk with rate N and step distribution
pn starting at a point z. For a finite set A C Sy, we denote by
7(A) the time when all the particles starting from A finally coalesce
into a single particle, that is to say, we define

7(A) := inf {t >0: #{& e A} =1 } . (11)

Take a sequence {ey} of positive numbers such that e,y — 0 and
Neny = o0 as N — oo.



12. Assumption (2)

Moreover, we suppose that when N — oo,

N-PE =0—0 and (12)
Y pule) - P(r({0,e}) € (ew,t]) =0 (VE>0).  (13)
eESN

We also assume now that the following limits exist :

Jm 3 (@) Pr{0,el) > em) =F(>0) (19

ecSy

. and lim P(T(A/EN) é EN) = BC(A) (15)

N—=oo

holds for any finite subset A C Z%. And also we denote by Sr the
totality of all the finite subsets in Z2.



13. Perturbation (1)

According to Liggett (1985), we consider decomposing proper com-
N

ponents of our model Res(py,c;') into two parts; a part of the
principal interacting particle system and the other part. Based
upon the notation in Liggett (1999), we consider decomposing
the rate function cy(z,n). In fact, we shall rewrite first a rate
NN + of fY) into a new rate NfY + 6 (f)? by using a
relation 6 = N(al — 1), and next decompose the rate function

cy(z,n) (which changes the coordinate 7n(z) into 1 — n(z)) as

en(z,m) = N -co(z,m) + c(z,m) 20, (16)
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14. Perturbation (2)

where

co(@,7) = Z PN (€)1 {n(z+e)n(@)} and (17)

ecSn

cp(,m) == 0 (F' (=, 7)) Lin(y=op + OF (& (2, 1) ni)=1} (18)

= Z ( H Ti(l"l'e)) (B (A)Lin(z)=0y + On(A) Lm)=1})-

AeSr EGA/EN

On the assumption that for real-valued functions By and dy defined
on Sg, there exist proper real-valued functions 8 and § defined on
Sr such that Sy — ( and dy — 0 are valid for each point of Sr as

N — oo, we consider the convergence of the law of the empirical
measure XV.



15. An Estimate (1)

For simplicity, when we set

Fi(Sr) ={f:Sr = R; |[fli:=)_ [f(A)] <o},  (19)

AeSp

then it follows that By (-){w(-) — B(-)¢(:) in Fi(Sr) as N — 0.
Under these circumstances, we have

Sup > max(#{A}, 1)(IBn(A)| + [6n(A))) <0 (20)

AeSr



16. An Estimate (2)

and the following estimate holds: i.e., for a certain positive constant
C(6) > 0,

> on(y/tn)(nly) - 1) <CG) Y on(A) [[n@ (1)

yeZs A€eSE acA
holds. While, when we define
6'(8,¢(-)) = Y B(A)(A)  and (22)
AeSr
6%(8,6,4()) == Y (B(A) +5(A)c(Au{0}),  (23)
AeSE

then we put 6 = 6%(8, ¢(-)) - 6%(8,6,¢(").



17. Convergence Result

THEOREM 1. (Convergence) When we denote the law of a
measure-valued stochastic process XV on the path space Qp by
Py, then there exists a probability measure P* € P(fc) such that

12— P-;fo (as N — OO) (24)
Then there exists a Mp(R?)-valued stochastic process X; = f"’ 0,0%
named a DW superprocess with parameters 2y §> 0,8 € R and
0% > 0, satisfying that X;¥ converges to Xf"“e"’ as N = oo in
the sense of weak convergence for measures, and Py is the law of

27,0,0°
X, ;



18. Martingale Problem

It is interesting to note that the DW superprocess (X;, Px ) that
appears in the limit gives a solution to the following martingale
problem. Namely, Xy = p holds Pj -a.s., and for f € C*(R) and
@ € Dom(A)

t 2

F(Xe, 0)) = £l ) — ] T F(Xnr)) - (Xs, Ag)ds

0 / (X @) - (X 0)ds — ]0 "(Xer ) - (Xoy P)ds
(25)

is a Py -martingale.



19. Sketch of Proof: Step 1 (1)

Step 1. In this section we shall introduce a sketch of proof of our main re-
sult Theorem 1, which asserts that rescaled empirical measures related to our
environment-dependent spatial models converge to a Dawson-Watanabe super-
process in the sense of weak topology under suitable conditions. First of all,
note that our basic setup yields to the finiteness of

E[ sup o] <00, VT >O0. (26)

0<igT

Based upon the above-mentioned estimation, combining the discussion on death

and birth processes to a series of results for voter models together, the following
Ny .

i

first decomposition for rescaled process models Res(py, «

Y (z) =m0 (z) + M} + D}'*,  VzeSy,t>0, (27)



20. Sketch of Proof: Step 1 (2)

where MLN " is a square integrable orthogonal martingale, and its predictable
quadratic variation process is given by

(M) z=/0 {ZN Py = 2)(&'(v) - &' (@) (28)

YyESN

+ > | Il &@+e) | Br(A)ligr@=o + on(Alere=y) p ds
AESE eGA/fN
Moreover, the term DY is given by

D;* = [: { ) N-pn(y—2)(E () - & (2)) (29)

YESN

i ( Il & +‘-‘3)) (B (A)Ley (my=0y — 5N(A)1{a£v(m)=1})} ds

AESF \ecA/in



21. Sketch of Proof: Step 1 (3)

Next, by employing Itd’s formula to f(n;z,v) := n(z)n(y), we may apply
the decomposition theorem for semimartingales to 7;' to obtain

t

i / oY (2)dDV* 42 / oY (@)dMN" 4+ MV, (30)
0 0

where [MY=], is the quadratic variation function for martingale MY and the
term [M7#], — (M~*), becomes a martingale. And also the integral term
g n (z)dMY= is a stochastic integral of Itd type with respect to a square
integrable martingale, which itself turns out to be a martingale again. Once this
form (30) can be derived, stochastic analysis is easily applicable to the object,
with the result that we can derive with ease the decomposition of measure-valued
process X which just corresponds to our original spatial model Res(py,a).



22. Sketch of Proof: Step 1 (4)

As a matter of fact, for any ¢ € Cy([0,T] x Sy) and 0 < ¢t < T, X} permits the
following second decomposition

(XY 00) = (Xq', o) + Df (0) + MY (), (31)

where M} (p) is a square integrable martingale, and its predictable quadratic
variation process (MY (y)); is also concretely expressed by the principal com-
ponents of the model Res(py, ), and moreover, it is uniquely determined as
well. More precisely, for 1) € Cy(Sn), we put

Fi(y) =Y N-pn(y—2)0@) —4(@), B4 := [ dE+e),

yESN eCA[lN

Fs(y) == (¥(y) — ¥(z))® and Fy(v), A) = Bn(A)l{y@)=0) + In(A)L{g()=1}-



23. Sketch of Proof: Step 1 (5)

Here for ,(x) = p(s,2) € Co([0,T] x Sy) and @4(z) = Zp(s,z) € Cy([0,T] x
Sn), D¥(y) can also be decomposed as follows: '

DY () = D" (p) + D () + D, (). (32)
We have respectively
t
P¥t(p) = [ XV (Filp) +pu)ds. (33)
1 t
D (p) =& [ > wulw) Y (A B, A)ds, (34)
0 €SN AeSFp

Py = 2 ] S 0u(@) 3 (Bw(A) + w(A) - i @ Fa(a, AYds.

TESN AESp

(35)




24. Sketch of Proof: Step 1 (6)

While, M (y) is a martingale which is given as a stochastic integral

we=5 Y [ e (30

€SN

by making use of the martingale term M/} in the first decomposition (27). By
virtue of the finiteness of E[sup,cy 7' |%] < o0, it follows that

2 (Z (| -%(x)de,z>T) <o @

zESN

holds, hence it is clear that the series (36) should be convergent in L? uniformly
relative to #(< T'). Thus we can deduce that the martungale M;Y(y) is L?-
integrable. :



25. Sketch of Proof: Step 1 (7)

Furthermore, we observe that the predictable quadratic variation process

(MY (ip)): of M} () consists of the following two terms:
(MY ()} = (MY (@) + (M (),

and each term is given by

M= 5 [ 3 6) TN oty — RN,

zESN yESN
M =g [ T ) T e AR, A

respectively.

(38)

(39)

(40)



26. Second Step

Step 2. Since we are going to discuss the convergence problem for the rescaled
process constructed in the previous step, when we denote the law of measure-
valued process X on the path space Qp by the symbol Py € P(f2p), then we
consider next the tightness of a family of probability measures {Iy; N > 1}
on the path space {)c. Recall that when E is a Polish space, the necessary and
sufficient condition for a sequence of probability measures { P, } on the Skorokhod
space D([0,00), E) to be C-tight is that {P,} is itself tight, and also that the
measure support of all the limit points (= the limit probability measures) lies on
the space of continuous paths C([0,00), ). On the other hand, thanks to the
Prokhorov theorem, we know that a sequence of laws on the path space {I’,}
(P, € P(2p)) is tight if and only if {P,} is relatively compact. Therefore, by
resorting to the Jakubowski theorem for weak convergence in {0p, we can easily
derive the C-tightness of the family { Py, N € N}. Hence, we finally prove that
there exists a proper subsequence {Py)} such that Py converges weakly to
a probability measure Py € P(Q¢).



27. Third Step (1)

The second decomposition has also an integral form

X 0) = 00+ [ Do)+ [(aM¥ip) ()

where

t o t t
DY) = [ DN()as = [ D (p)ds+ [ D¥*(p)dst | B

For f € C?*(R), we may apply It6’s formula to (41) to obtain
| ) )
£ o) = £ o) + [P, 0D ()ds

+ f t'f'((Xf ,p))dM;Y (so)+-;- f FIUXY, o)AMY (0))s (42)
0 _ A



28. Third Step (2)

t
For k = 1,2,3, we put D;*(p) := f DYN*(p)ds, and we also use
0

a new symbol A := A — @ for simplicity. Moreover, we define

DY) = [ SO ()D (p)ds
0

D) = | PONE)DY)ds @)

DY) = [ FX @)D
0 | _

. _ t
Similarly, we put  (MN(p)); = [ XN () d(MY (i)
fork=1,2. ‘ ’



29. Third Step (3)

Then it is easy to see that, as N — oo,

2

B|DM) - [ NN, A+ s 50 )
0 .

2
-0 45) -

B |D(0)+ DI0) ~ [ O ()XY b1

E —0  (46)

W+ ()~ [ £ )XY 2vehds

When we set f)f (p) = DY () + DN (p) + D3 (p), then an application of
(44) and (45) yields to -

P([p2o) - [[ oot (B oos - [ £, bpds] >€) 20
0 _ 0



30. Third Step (4)

Then (46) yields to

Ph(

@3 )+ ()~ [ (X ) 2rds| > ) 0
Consequently, when the subsequence convergence | |
PX(®e()) = P(Xe€() in D(0,0),Mp(RY)  (47)

holds for a measure-valued process X;(w), then we observe that a triplet
(X;'®, DY (@), (M), + (M,D),) is C-tight in the Skorokhod space

D([0, 00), MF(R?) x C(R) x C(R*))

Hence, by virtue of application of Skorokhod theorem for sub-subsequence, it
follows finally that '

5, DY (@), (Mg Me + (M) — (X, Dile), Qo)) as.



31. Third Step (5)

‘Thus we attain that |
| Fopd o) = f(Xa) - S0
- [ o0 Ands - [ PO KarNls  @8)

is a continuous, F;*-measurable, L*-martingale.
Equivalently, for F(u) = f({u,)) with F € Dom(L,),

F(X,) - F(X,) - A "LoF(X.)ds isa P}, —martingale

As a consequence, it is proven that the law P(X. € (-)) of the limit process
X = {X,} satisfies the martingale problem characterizing Px, € P(fc).



32. Another Situation (1)
Assume that 3{e}}, e} > 0 such that ey — 0, N -} — oo (as N — o0), and
() =Y pnle,x)- PGFY({0,€}) > €}) (49)

ecSy
and yn(z) = v(z) as N = oo. Here #¥(A) denotes the time at which all
particles starting from a set A C Sy have coalesced into a single particle.
For a bounded and measurable function ¢ : [0, 7] x Sy — R, there is a constant
C > 0 such that

@ =2 [ XXGER @ Nas+ [ e (60)
(Estimate (1)) =¥ (80 < C\'}“'_"< Ny (6)

Esimate ) 1000 < DB P a2



33. Another Situation (2)

As a result that

[EXE@ @) - XN @ - ) ye

Therefore it follows immediately that

E 2-—-)0 (N —o00) (53)

2—)0 (N —=00) (54)

E I(MN(ga)): + (MY (@) -2 fo t<Xi" ,Y(x)$2)ds

We define .

eap) = [ AT @)+ [ e B 65

where F € Dom(L;) and A = 222—}4 +0.




34. Another Situation (3)

THEOREM 2. (Convergence) When we denote the law of a measure-valued
stochastic process X" on the path space 2p by Py, then there exists a proba-
bility measure P € P() such that |

Py = Py, (a8 N— o) (1)

Then there exists a Mp(R%)-valued stochastic process X; = X,"® named a
superprocess with spatially dependent parameter ~(z) > 0, satisfying that XN
converges to X;"® as N — oo in the sense of weak convergence for measures,
and Py, is the law of X,"® with the initial value Xj.
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