On Convergence of Environment-Dependent Models

Isamu DÖKU Department of Mathematics, Saitama University

Let \mathbb{Z}^d be a *d*-dimensional lattice, and each site on \mathbb{Z}^d is occupied by either one of the two species. At each random time, a particle dies and is replaced by a new one, but the random time and the type chosen of the species are assumed to be determined by the environment conditions around the particle. The random function $\eta_t : \mathbb{Z}^d \to \{0,1\}$ denotes the state at time t, and each number of $\{0, 1\}$ denotes the label of the type chosen of the two species. When we set $||y||_{\infty} := \max_{i} y_{i}$, we define $\mathcal{N}_{x} := x + \{y : 0 < ||y||_{\infty} \leq r\}$. For i = 0, 1, let $f_{i}(x, \eta)$ be a frequency of type i in the neighborhood \mathcal{N}_x of x for η . For non-negative parameters $\alpha_{ij} \geq 0$, the dynamics of η_t is defined as follows. The state η makes transition $0 \rightarrow 1$ at rate $\lambda f_1(f_0 + \alpha_{01}f_1)/(\lambda f_1 + f_0)$, and it makes transition $1 \to 0$ at rate $f_0(f_1 + \alpha_{10}f_0)/(\lambda f_1 + f_0)$. The exchange of particles after death is described in the form being proportional to the weighted density between the two species, expressed by a parameter λ . For brevity's sake we shall treat a simple case $\lambda = 1$ only in what follows. For $N = 1, 2, \ldots$, let $m_N \in \mathbb{N}$, and we put $\ell_N := m_N \sqrt{N}$, and $\mathbb{S}_N := \mathbb{Z}^d / \ell_N$. While, $W_N = (W_N^1, \ldots, W_N^d) \in (\mathbb{Z}^d / m_N) \setminus \{0\}$ is defined as a random vector satisfying (i) $\mathcal{L}(W_N) = \mathcal{L}(-W_N)$; (ii) $E(W_N^i W_N^j) \to \delta_{ij} \sigma^2 \geq 0$ (as $N \to \infty$); (iii) { $|W_N|^2$ } ($N \in \mathbb{N}$) is uniformly integrable. Here $\mathcal{L}(Y)$ indicates the law of a random variable Y. For the kernel $p_N(x) := P(W_N/\sqrt{N} = x), x \in \mathbb{S}_N$ and $\eta \in \{0,1\}^{\mathbb{S}_N}$, we define the scaled frequency f_i^N as

$$f_i^N(x,\eta) = \sum_{y \in \mathbb{S}_N} p_N(y-x) \mathbf{1}_{\{\eta(y)=i\}}, \qquad (i=0,1).$$
(1)

We denote by η_t^N the state determined by the scaled frequency depending on α_i^N and p_N . On this account, we may define the associated measure-valued process as

$$X_t^N := \frac{1}{N} \sum_{x \in \mathbb{S}_N} \eta_t^N(x) \delta_x.$$
⁽²⁾

For the initial value X_0^N , we assume that $\sup_N \langle X_0^N, 1 \rangle < \infty$ and $X_0^N \to X_0$ in $M_F(\mathbb{R}^d)$ as $N \to \infty$, where $M_F(\mathbb{R}^d)$ is the totality of all the finite measures on \mathbb{R}^d , equipped with the topology of weak convergence. Let $\{\xi_t^x\}$ be a continuous time random walk with rate N and step distribution p_N starting at a point $x \in S_N$, and $\{\hat{\xi}_t^x\}$ be a continuous time coalescing random walk with rate N and step distribution p_N starting at a point $x \in S_N$, we denote by $\tau(A)$ the time when all the particles starting from A finally coalesce

into a single particle, that is to say, we define $\tau(A) := \inf\{t > 0 : \#\{\hat{\xi}_t^x; x \in A\} = 1\}$. Take a sequence $\{\varepsilon_N\}$ of positive numbers such that $\varepsilon_N \to 0$ and $N\varepsilon_N \to \infty$ as $N \to \infty$. Moreover, we suppose that when $N \to \infty$,

$$N \cdot P(\xi_{\varepsilon_N}^0 = 0) \to 0 \quad \text{and} \quad \sum_{e \in \mathbb{S}_N} p_N(e) \cdot P(\tau(\{0, e\}) \in (\varepsilon_N, t]) \to 0 \quad (\forall t > 0).$$
(3)

We also assume now that the following limits exist :

$$\lim_{N \to \infty} \sum_{e \in \mathbb{S}_N} p_N(e) \cdot P(\tau(\{0, e\}) > \varepsilon_N) = \exists \gamma(>0)$$
(4)

and
$$\lim_{N \to \infty} P\left(\tau(A/\ell_N) \leqslant \varepsilon_N\right) = \exists \zeta(A)$$
(5)

holds for any finite subset $A \subset \mathbb{Z}^d$.

THEOREM. (cf.[1],[2]) When we denote the law of a measure-valued stochastic process X_{\cdot}^{N} on the path space Ω_{D} by P_{N} , then there exists a probability measure $P^{*} \in \mathcal{P}(\Omega_{C})$ such that

$$P_N \implies P_{X_0}^* \quad (\text{as } N \to \infty).$$
 (6)

Then there exists a $M_F(\mathbb{R}^d)$ -valued stochastic process $X_t = X_t^{2\gamma,\theta,\sigma^2}$ named a DW superprocess with parameters 2γ , θ and σ^2 , satisfying that X_t^N converges to $X_t^{2\gamma,\theta,\sigma^2}$ as $N \to \infty$ in the sense of weak convergence for measures, and $P_{X_0}^*$ is the law of $X_t^{2\gamma,\theta,\sigma^2}$.

References

- Cox, J. T., Durrett, R. and Perkins, E. A. : Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 (2000), 185–234.
- Cox, J. T. and Perkins, E. A. : Rescaled Lotka-Volterra models converge to super-Brownian motion. Ann. Probab. 33 (2005), 904–947.
- 3. Dawson, D. A. and Perkins, E. : Superprocesses at Saint-Flour. Springer, Berlin, 2012.
- Dôku, I. : A certain class of immigration superprocesses and its limit theorem. Adv. Appl. Stat. 6 (2006), 145–205.
- Dôku, I. : A limit theorem of superprocesses with non-vanishing deterministic immigration. Sci. Math. Japn. 64 (2006), 563–579.
- Dôku, I. : Limit theorems for rescaled immigration superprocesses. RIMS Kôkyûroku Bessatsu, B6 (2008), 56–69.
- Dôku, I. : A limit theorem of homogeneous superprocesses with spatially dependent parameters. Far East J. Math. Sci. 38 (2010), 1–38.
- Dynkin, E. B. : Superprocesses and partial differential equations. Ann. Probab. 21 (1993), 1185–1262.
- 9. Liggett, T. M.: Interacting Particle Systems. Springer, New York, 1985.