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Let Z¢ be a d-dimensional lattice, and each site on Z? is occupied by either one of the two
species. At each random time, a particle dies and is replaced by a new one, but the random
time and the type chosen of the species are assumed to be determined by the environment
conditions around the particle. The random function 7, : Z¢ — {0,1} denotes the state at
time ¢, and each number of {0, 1} denotes the label of the type chosen of the two species. When
we set [|ylloo := max; y;, we define N, := 2+ {y: 0 < ||yl < 7}. For i =0,1, let fi(z,n)
be a frequency of type i in the neighborhood N, of x for . For non-negative parameters
a;j > 0, the dynamics of 7, is defined as follows. The state n makes transition 0 — 1 at rate
Mi(fo+ao1f1)/(Af1+fo), and it makes transition 1 — 0 at rate fo(f1+a10f0)/(Af1+fo). The
exchange of particles after death is described in the form being proportional to the weighted
density between the two species, expressed by a parameter X\. For brevity’s sake we shall
treat a simple case A = 1 only in what follows. For N = 1,2,..., let my € N, and we
put {n := myVN, and Sy := Z¢/lx. While, Wy = (W4, ..., W) € (Z¢/my) \ {0} is
defined as a random vector satisfying (i) L(Wx) = L(~Wx); (i) E(WLWY) — d;02(> 0)
(as N — o00); (iii) {{Wn|?} (N € N) is uniformly integrable. Here £(Y') indicates the law of a
random variable Y. For the kernel py(z) :== P(Wy/VN = z), € Sy and € {0,1}5~, we

define the scaled frequency f as

am) = pnly—2)lpw—y, (=0,1). (1)
YESN
We denote by ¥ the state determined by the scaled frequency depending on o and py. On

this account, we may define the associated measure-valued process as

XY= 2 3 @ (2)

rESN
For the initial value X}V, we assume that sup, (X,1) < oo and X — Xy in Mp(RY) as
N — oo, where Mp(R?) is the totality of all the finite measures on R?, equipped with the
topology of weak convergence. Let {7} be a continuous time random walk with rate N and
step distribution py starting at a point = € Sy, and {éf} be a continuous time coalescing
random walk with rate IV and step distribution py starting at a point z. For a finite set

A C Sy, we denote by 7(A) the time when all the particles starting from A finally coalesce



into a single particle, that is to say, we define 7(A) := inf{t > 0 : #{¢%; z € A} =1}. Take a
sequence {ey} of positive numbers such that ey — 0 and Ney — oo as N — co. Moreover,
we suppose that when N — oo,
N-P@&,=0)—-0 and > pn(e)-P(r({0,¢}) € (en,t]) >0 (vt >0).  (3)
ecSn

We also assume now that the following limits exist :

A > pale 7({0,e}) > en) = 3y(> 0) (4)
eESN
and  lim P (r(4/6x) < en) = 3(4) (5)

holds for any finite subset A C Z¢.

THEOREM. (cf.[1],[2]) When we denote the law of a measure-valued stochastic process X

on the path space 1p by Py, then there exists a probability measure P* € P({2¢) such that
Py = Pk, (as N — 00). (6)

2
Then there exists a Mp(R?)-valued stochastic process X; = Xt277970 named a DW superpro-

%%&02

cess with parameters 27, 6 and o2, satisfying that X}V converges to X, as N — oo in

: 27,0,0°
the sense of weak convergence for measures, and Py, is the law of X,”"%7 .
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