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Introduction.
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Aim 1

The local time (at zero) of the one-dimensional Wiener process
w = (w(t))t>0 starting from zero is

heuristically “

∫ t

0
δ0(w(s))ds”, 1©

rigorously lim
ε→0

∫ t

0
ϕε(w(s))ds

with a family of functions {ϕε}ε>0 such that ϕε
ε→0→ δ0 in S ′(R).

In this talk, our first aim is to formulate 1© directly as a
Bochner integral.
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Known About Donsker’s Delta

Donsker’s δ-function δ0(w(s)) has formulations

B (Kuo ’82) as a generalized Brownian functional via white
noise calculus.

B (Watanabe ’84) as a generalized Wiener functional. We
employ this.

More specifically,

B (Nuarart-Vives ’93 and Watanabe ’91 & ’94)

δ0(w(s)) ∈ D(−1/2)−
2 =

∩
ε>0

D(−1/2)−ε
2

Hereafter, Ds
p, p ∈ (1,∞), s ∈ R denotes the so-called

Meyer-Watanabe spaces.
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Aim 2: “Regularizing Effect” I

We will prove the Bochner integrability of the mapping

(0, t] 3 s 7→ δ0(w(s)) ∈ D−(1/2)−ε
2 for ε > 0.

Note: δ0(w(0)) no longer makes sense as a generalized Wiener
functional, and hence the Bochner integrability is not immediate
from the continuity of s 7→ δ0(w(s)).

After showing that, the Bochner integral is defined and∫ t

0

δ0(w(s))ds ∈ D−(1/2)−ε
2 for ε > 0.
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Aim 2: “Regularizing Effect” II

However, the local time is usually defined as a classical Wiener
functional, so that it should be in D0

2 = L2.

Hence the Bochner integral should pose a sort of “regularizing
effect”. This phenomenon might be a common understanding at
the level of intuition for most of us, but there have not been
literatures on this subject except for the case of local time.

Our second aim is to understand this phenomenon in terms of
Meyer-Watanabe spaces.
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Regularizing effect under Wiener process.
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Exhibiting the Regularizing Effect I

The following is the prototype of this study.

Theorem

Let Λ ∈ S ′(R), t > 0 and s ∈ R. If Λ(w(t)) ∈ Ds
2 then the

mapping

(0, t] 3 u 7→
√

t

u
Λ
(√ t

u
w(u)

)
∈ Ds

2

is Bochner integrable and∫ t

0

√
t

u
Λ
(√ t

u
w(u)

)
du ∈ Ds+1

2 .
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Exhibiting the Regularizing Effect II

In particular, we recover that∫ t

0
δ0(w(s))ds ∈ D(1/2)−

2 =
∩
ε>0

D(1/2)−ε
2

which agrees with results by Nualart-Vives ’92 & Watanabe ’94.
For higher dimensional local times, we refer Takanobu ’04 and
Uemura ’01, ’04.
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Exhibiting the Regularizing Effect: Proof. I

Proof. Let Hn: the n-th Hermite polynomial for n ∈ Z>0 such

that { 1√
n!
Hn}∞n=0 is a CONB of L2(R, e

−x2/2
√
2π

dx).

Bochner integrability: We have

Λ
(√ t

u
w(u)

)
=

∞∑
n=0

1

n!
E
[
Λ
(√ t

u
w(u)

)
Hn

(w(u)√
u

)]
Hn

(w(u)√
u

)
,

so that

‖
√

t

u
Λ
(√ t

u
w(u)

)
‖22,s =

t

u

∞∑
n=0

(1 + n)s

n!
E
[
Λ
(√ t

u
w(u)

)
Hn

(w(u)√
u

)]2
.
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Exhibiting the Regularizing Effect: Proof. II

Continue computation:

‖
√

t

u
Λ
(√ t

u
w(u)

)
‖22,s

=
t

u

∞∑
n=0

(1 + n)s

n!
E
[
Λ
(√ t

u
w(u)

)
Hn

(w(u)√
u

)]2
︸ ︷︷ ︸
= E[Λ(w(t))Hn

(w(t)√
t

)
]2

=
t

u

∞∑
n=0

(1 + n)s

n!
E
[
Λ(w(t))Hn

(w(t)√
t

)]2
=

t

u
‖Λ(w(t))‖22,s .
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Exhibiting the Regularizing Effect: Proof. III

Hence ∫ t

0
‖
√

t

u
Λ
(√ t

u
w(u)

)
‖2,sdu

= t1/2‖Λ(w(t))‖2,s
∫ t

0
u−1/2du < +∞, Done.

Second assertion: Next we show∫ t

0

√
t

u
Λ
(√ t

u
w(u)

)
du ∈ Ds+1

2 .
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Exhibiting the Regularizing Effect: Proof. IV

Note that∫ t

0

√
t

u
Λ
(√ t

u
w(u)

)
du

=
∞∑
n=0

1

n!
E
[
Λ(w(t))Hn

(w(t)√
t

)] ∫ t

0

√
t

u
Hn

(w(u)√
u

)
du︸ ︷︷ ︸

still remains to be an n-th order chaos

is an Itô-Wiener expansion of
∫ t
0

√
t
uΛ

(√
t
uw(u)

)
du.
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Exhibiting the Regularizing Effect: Proof. V

Therefore

∥∥ ∫ t

0

√
t

u
Λ
(√ t

u
w(u)

)
du

∥∥2
2,s+1

=
∞∑
n=0

(n + 1)s+1

(n!)2
E
[
Λ(w(t))Hn

(w(t)√
t

)]2
× E

[{ ∫ t

0

√
t

u
Hn

(w(u)√
u

)
du

}2]
︸ ︷︷ ︸

need to compute

.
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Exhibiting the Regularizing Effect: Proof. VI

E
[{ ∫ t

0

√
t

u
Hn

(w(u)√
u

)
du

}2]
= 2t

∫
0<u<v<t

1√
uv

E
[
Hn

(w(u)√
u

)
Hn

(w(v)√
v︸ ︷︷ ︸√

u
v
w(u)√

u
+ w(v)−w(u)√

v

)]
dudv

= 2t n!

∫
0<u<v<t

1√
uv

(u
v

)n/2
dudv =

4t2

n + 1
n!.
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Exhibiting the Regularizing Effect: Proof. VII

Hence

∥∥ ∫ t

0

√
t

u
Λ
(√ t

u
w(u)

)
du

∥∥2
2,s+1

=
∞∑
n=0

(n + 1)s+1

(n!)2
E
[
Λ(w(t))Hn

(w(t)√
t

)]2 4t2

n + 1
n!

= 4t2
∞∑
n=0

(n + 1)s

n!
E
[
Λ(w(t))Hn

(w(t)√
t

)]2
= 4t2‖Λ(w(t))‖22,s < +∞. �
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Regularizing effect under diffusion process.
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In the sequel, we shall consider a “regularizing effect” for the local
time “

∫ t
0 δy (X (s, x ,w))ds” in a much weaker form, where

{X (t, x ,w)}t>0 is a unique strong solution to 1-dim. SDE

dXt = σ(Xt)dw(t) + b(Xt)dt

such that X (0, x ,w) = x ∈ R.

Assumption.

(i) σ, b : R → R are C∞ and bounded,

(ii) all derivatives of σ and b are bounded,

(iii) infx∈R σ(x)2 > 0.
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Bochner Integrability Under Diffusion

A distribution Λ ∈ S ′(R) is said to be positive if

〈Λ, f 〉 > 0 ∀nonnegative f ∈ S (R).

This condition is known to imply

B ∃ a non-negative Radon measure µ on R s.t.

〈Λ, f 〉 =
∫
R
〈δy , f 〉µ(dy) ∀f ∈ S (R).

Theorem

Let x ∈ R, t > 0 and Λ ∈ S ′(R) be positive. Then

∀p ∈ (1,∞),

∫ t

0

∫
R
‖δy (X (s, x ,w))‖p,−2µ(dy)ds < +∞,

where µ is the Radon measure associated to Λ.
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Sketch of Proof

Take K > 0 s.t.

|x − y |2 > y2

2
for any |y | > K

and then we divide the integral∫ t

0

∫
R
‖δy (X (s, x ,w))‖p,−2µ(dy)ds

=

∫ t

0

∫
|y |>K

‖δy (X (s, x ,w))‖p,−2µ(dy)ds︸ ︷︷ ︸
=: I1

+

∫ t

0

∫
|y |6K

‖δy (X (s, x ,w))‖p,−2µ(dy)ds︸ ︷︷ ︸
=: I2

.
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Sketch of Proof: Estimate of I1 I

Proposition

There exist ν0, c1, c2 > 0 s.t.

‖δy (X (s, x ,w))‖p,−2 6 c1s
−ν0 exp

{
− c2

|x − y |2

s

}
for any s ∈ (0, t] and y ∈ R with |y | > K.

Hence we have

I1 =

∫ t

0

∫
|y |>K

‖δy (X (s, x ,w))‖p,−2µ(dy)ds

6 c1

∫ t

0

∫
|y |>K

s−ν0 exp
{
− c2

|x − y |2

s︸ ︷︷ ︸
> |y |2

2s

}
µ(dy)ds
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Sketch of Proof: Estimate of I1 II

6 c1

∫ t

0

∫
|y |>K

s−ν0 exp
{
− c2

|y |2

2s

}
︸ ︷︷ ︸
6 const. e−c2

|y|2
4s

µ(dy)ds

6 const.c1

∫ t

0

∫
|y |>K

exp
{
− c2

|y |2

4s︸︷︷︸
> |y |2

4t

}
µ(dy)ds

6 const.c1 t

∫
R
exp

{
− c2

|y |2

4t

}
︸ ︷︷ ︸

=: ϕ(y)

µ(dy)

6 const.c1 t 〈Λ, ϕ〉 < +∞ because ϕ ∈ S (R).
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Sketch of Proof: Estimate of I2 I

Consider {X ε(t, x ,w)}t>0, the strong solution to

dXt = εσ(Xt)dw(t) + ε2b(Xt)dt.

Well known: {X (ε2t, x ,w)}t>0
in law
= {X ε(t, x ,w)}t>0 ∀ε > 0.

A more tricky fact which we need is

Lemma

∀p ∈ (1,∞), ∀s ∈ R and ∀T ∈ S ′(R),

‖T (X (ε2t, x ,w))‖p,s = ‖T (X ε(t, x ,w))‖p,s .
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Sketch of Proof: Estimate of I2 II

Therefore we have

s1/2 sup
y∈R

‖δy (X (s, x ,w))‖p,−2

= s1/2 sup
y∈R

‖δy (X
√
s(1, x ,w))‖p,−2

= sup
y∈R

‖δ(x−y)/
√
s

(X√
s(1, x ,w)− x√

s

)
‖p,−2

6 const. sup
a∈R

‖δa‖−2 < +∞,

where ‖δa‖−2 := ‖(1 + z2 − d2

dz2
)−1δa‖∞.
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Sketch of Proof: Estimate of I2 III

Hence we obtain

I2 =

∫ t

0

∫
|y |6K

‖δy (X (s, x ,w))‖p,−2µ(dy)ds

6 const. µ
(
{y ∈ R : |y | 6 K}

)︸ ︷︷ ︸
< +∞ since µ is Radon.

∫ t

0
s−1/2ds < +∞. �
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A Generalized Itô Formula I

Let Λ ∈ S ′(R) and k ∈ N. If
∫ t
0 ‖Λ(X (s, x ,w))‖22,−kds < +∞, we

define the stochastic integral
∫ t
0 Λ(X (s, x ,w))dw(s) ∈ D−∞ by

the pairing

E
[{ ∫ t

0
Λ(X (s, x ,w))dw(s)

}
J
]
=

∫ t

0
E[Λ(X (s, x ,w))DsJ]ds

for J ∈ D∞. This is well defined by

Proposition (cf. Uemura ’04)

For J ∈ D∞, we have∫ t

0
|E[Λ(X (s, x ,w))DsJ]|ds

6 const.
{∫ t

0
‖Λ(X (s, x ,w))‖22,−kds

}1/2
‖J‖2,k+1.
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A Generalized Itô Formula II

Let V := σ d
dz and L := σ2

2
d2

dz2
+ b d

dz .

Theorem (cf. Kubo ’83)

Let f : R → R be a m’ble function such that

(i) f is continuous at x, (ii) f ∈ S ′(R),

(iii)

∫ t

0
‖(Vf )(X (s, x ,w))‖22,−kds < +∞,

(iv)

∫ t

0
‖(Lf )(X (s, x ,w))‖2,−kds < +∞

for some k ∈ N. Then we have

f (X (t, x ,w))− f (x)

=

∫ t

0
(Vf )(X (s, x ,w))dw(s) +

∫ t

0
(Lf )(X (s, x ,w))ds in D−∞.
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Regularizing Effect in Weaker Form I

We fix y ∈ R and set for x ∈ R,

s(x) :=

∫ x

0
exp

{
−

∫ z

y

2b(η)

σ(η)2
dη

}
dz ,

m(x) := 2

∫ x

0
exp

{∫ z

y

2b(η)

σ(η)2
dη

} dz

σ(z)2
.

Define u : R → R by

u(x) :=
m′(y)

2
|s(x)− s(y)|, x ∈ R.

Assumption.

(iv) ∃c > 0 & p > 1 s.t.∣∣ ∫ z

y

2b(η)

σ(η)2
dη

∣∣ 6 c log(1 + |z − y |p), z ∈ R.

( u ∈ S ′(R).)
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Regularizing Effect in Weaker Form II

Lemma

We have Lu = δy in the distributional sense.

Hence we have

u(X (t, x ,w))− u(x)

=

∫ t

0
(Vu)(X (s, x ,w))dw(s) +

∫ t

0
δy (X (s, x ,w))ds

in D−∞, from which we conclude

Corollary

Under (i)-(iv), we have

∫ t

0
δy (X (s, x ,w))ds ∈ L2.
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Thank you for your attention.
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