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On the derivation of noncausal function from its Haar-SFCs ∗

Shigeyoshi OGAWA (Ritsumeikan University)

Hideaki UEMURA (Aichi University of Education)

(i) SFC.　 Let f(t, ω) be a random function on [0, 1] × Ω and {ϕn(t)} be a CONS in

L2([0, 1]; C). The system {f̂n(ω) =
∫ 1

0
f(t, ω)ϕn(t)dWt} is called the stochastic Fourier

coefficients (SFCs in abbr.) of f(t, ω), {W (t), t ∈ [0, 1]} being a Brownian motion on

(Ω,F , P ) which starts at the origin. It is of course that the stochastic integral
∫

dW in

the definition of SFCs should adequately be chosen according to the conditions on f(t, ω).

We are concerned with the problem whether f(t, ω) is identified from the SFCs of f(t, ω)

or not.

In this talk we consider the case that f(t, ω) is noncausal, and we aimed to identify

f(t, ω) without the aid of a Brownian motion. Moreover, we intend to derive f(t, ω0) from

SFCs {f̂n(ω0)} for almost all ω0.

(ii) SFT.　 Let {εn} be an ℓ2 sequence such that εn ̸= 0 for all n. Then

T(ε,ϕ)(f)(t, ω) =
∑

n

εnf̂n(ω)ϕn(t)

is called (εn, ϕn)-stochastic Fourier transform (SFT in abbr.) of f(t, ω). In [1] we dis-

cussed this problem under the condition that SFCs are defined by employing the Ogawa in-

tegral as a stochastic integral and the system of trigonometric functions en(t) = e2πint, n ∈
Z, as a CONS. We assumed the next three conditions on f(t, ω);

[H1] For almost all ω, f(t, ω) is a differentiable function with respect to t satisfying

f ′(t, ω) ∈ L2([0, 1], dt), where f ′(t, ω) = ∂f(t, ω)/∂t.

[H2]
∫ 1

0
f(t, ω)dt ∈ L2(Ω, dP ) and f ′(t, ω) ∈ L2([0, 1] × Ω, dtdP ).

[H3] For almost all ω, f(t, ω) is a nonnegative function.

[H.1] assures us of the existence of SFCs, and the (τn, en)-SFT T(τ,e)(f)(t, ω) of f(t, ω)

exists in C1(0, 1) under the condition [H.2], where τn = (−4π2n2)−1 if n ̸= 0 and τ0 = 1.

From [H.3] and the law of iterated logarithm of the Brownian motion we have

P

lim sup
h↓0

T(τ,e)(f)′(t + h, ω) − T(τ,e)(f)′(t, ω)√
2h log log 1

h

= f(t, ω), ∀t ∈ T

 = 1,

∗This work was partially supported by JSPS KAKENHI Grant Numbers 25400135, 26400152.
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where T is an arbitrary dense subset of (0, 1).

(iii) Haar-SFC.　 In this talk we employ the Ogawa integral and the system of Haar

functions to define SFCs of f(t, ω). We assume the next two conditions on f(t, ω);

[H1’] For almost all ω, f(t, ω) is a continuous function on [0, 1] satisfying there exists a

function g(s, ω) ∈ L2([0, 1], ds) such that f(t, ω) − f(0, ω) =
∫ t

0
g(s, ω)ds.

[H3] For almost all ω, f(t, ω) is a nonnegative function.

Let {H(n)
k ; (n, k) ∈ Λ} be the system of Haar functions on [0, 1], i.e., H

(0)
0 (t) = 1 and

H
(n)
k (t) =


2(n−1)/2 (tn.2k ≤ t < tn.2k+1)

−2(n−1)/2 (tn.2k+1 ≤ t < tn.2k+2)

0 (otherwise)

(n = 1, 2, . . . , k = 0, 1, . . . , 2n−1 − 1),

where tn,k = k/2n. We denote the Haar SFC corresponding to H
(n)
k (t) by f̂

(n)
k (ω):

f̂
(n)
k (ω) =

∫ 1

0

f(t, ω)H
(n)
k (t)d∗Wt,∫

d∗Wt denoting the Ogawa integral. Set

SN(t.ω) = f̂
(0)
0 (ω)H

(0)
0 (t) +

N∑
n=1

2n−1−1∑
k=0

f̂
(n)
k (ω)H

(n)
k (t).

Then we have the following lemma;

Lemma 1. For t ∈ [tN,ℓ, tN,ℓ+1), ℓ = 0, 1, . . . , 2N − 1 , it holds that

SN(t.ω) = 2N

[
f(tN,ℓ+1, ω)W (tN,ℓ+1) − f(tN,ℓ, ω)W (tN,ℓ) −

∫ tN,ℓ+1

tN,ℓ

g(t, ω)W (t)dt

]
.

From [H.3] and the law of iterated logarithm of the Brownian motion we have our main

theorem;

Theorem 1. Suppose that f(t, ω) satisfies conditions [H.1’] and [H.3]. Let T be a count-

able dense subset of [0, 1). Then we have

P

(
lim sup

N→∞

SN(t, ω)√
2N+1 log N

= f(t, ω), ∀t ∈ T

)
= 1.

References

[1] Ogawa,S and Uemura,H.: ”On the identification of noncausal functions from the
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Locality property and a related continuity problem for SLE and SKLE

Masatoshi Fukushima(Osaka)

a joint work with Zhen-Qing Chen(Seattle)

The Schramm Loewner evolution SLEκ for κ > 0 is a family of random growing hulls {Ft} in
the upper half-plane H driven by ξ(t) = B(κt) through the Loewner differential equation, where
B(t), t ≥ 0, is the standard Brownian motion on the boundary ∂H. Early in the 2000s, G. Lawler,
G. Schramm and W. Werner observed that SLE6 enjoys the locality property in the sense that, if H
is perturbed away from the hulls, the family of perturbed hulls {F̃t} under a due reparametrization
has the same distribution as the unperturbed one {Ft} (see Figure 1 for percolation). This property
can be shown by comparing the driving process ξ̃(t) of {F̃t} with B(6t) in principle.

But, in doing so rigorously, one need to verify the joint continuity in (t, z̃) for the family of
conformal maps g̃t(z̃) associated with {F̃t}, that seems to be left unconfirmed. In this lectures,
we will characterize the locality property of stochastic Komatu-Loewner evolutions for multiply
connected domains by establishing the stated continuity in this generality.

A standard slit domain is a domain of the type D = H \
∪N

j=1Cj for mutually disjoint line

segments Cj ⊂ H parallel to ∂H. Consider a set S ⊂ R3N representing the collection of all labelled
slits. Let (ξ(t), s(t)) ∈ ∂H × S be the strong solution of an SDE such that a diffusion coefficient
α and a drift coefficient b of ξ(t) are homogeneous functions of degree 0 and −1, respectively,
both satisfying a local Lipschitz continuity condition, while each component of s(t) has only a drift
coefficient determined by the trace to the slits of the BMD complex Poisson kernel that is known
to be locally Lipschitz continuous.

A stochastic Komatu-Loewner evolution denoted by SKLEα,b is a family of random growing hulls
{Ft} in a standard slit domain D driven by (ξ(t), s(t)) through the Komatu-Loewner differential
equation. Let bBMD be the BMD-domain constant that describes the discrepancy of a standard slit
domain from H relative to BMD (Brownian motion with darning).

Theorem 0.1 SKLEα,−bBMD
for a positive constant α enjoys the locality property if and only if

α =
√
6.

We use a probabilistic expression of ℑht(z) in terms of the BMD and the absorbing Brownian
motion (ABM) on Dt and combine it with the conformal invariance of BMD and ABM to obtain
an expression of ℑg̃t(z̃) in terms of gt(z) (see Figure 3). Note that gt(z) is jointly continuous as
the solution of ODE (KL-equation). This is the way to prove the desired joint continuity of g̃t(z̃),
which additionally yields the joint continuity of ht(z), h

′
t(z), h

′′
t (z). The last property is crucial to

legitimate a use of a generalized Itô formula on a composite of a semi-martingale and a random
smooth function formulated by Revuz-Yor in getting an explicit semi-martingale expression of the
driving process ξ̃(t) of the image hulls {F̃t}.

Some open problems related to SKLE will be also discussed.
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SLK martingales and representations of
the Witt algebra

Kazuhiro Yoshikawa (Ritsumeikan University)

Takafumi Amaba ∗ (Ritsumeikan University)

1. Introduction

The Loewner differential equation whose driving function is a Brownian motion is called

the Schramm Loewner evolution (SLE). The random coefficients of the expansion of the

SLE have a hierarchy of stochastic differential equations, which induces a class of polyno-

mials characterized by martingales. It is known that those polynomials connect the SLE to

representations of the Virasoro algebra ([3]). In this talk, we introduce random coefficients

based on the Loewner-Kufarev equation and martingales related with the Kirillov-Neretin

polynomials. Our aim is to find some relations between stochastic differential equations

and representations of the Virasoro algebra

2. A hierarchical solution of stochastic differential equations

Put D = {z ∈ C | |z| < 1}. We consider stochastic processes C(t), c1(t), c2(t), . . .

generated by a holomorphic function gt(z) on D :

gt(z) = C(t)(z + c1(t)z
2 + c2(t)z

3 + · · · )

which is a solution of the following stochastic differential equation dgt(z) = zg′t(z)
{
dX0

t +
∑∞

k=1 z
kdXk

t

}
,

g0(z) = z ∈ D.
(2.1)

Here X0
t = α−1

0 t, α0 > 0, Xk
t = α−1

k Zk
t , αk > 0 for k ≥ 1 and Z1

t , Z
2
t , . . . are infinitely

many independent complex Brownian motions. We note that the solution of (2.1) means

a hierarchy of stochastic differential equations for the coefficients of the expansion of gt(z):

dC(t) = C(t)dX0
t ,

dc1(t) = dX1
t + c1(t)dX

0
t ,

dc2(t) = dX2
t + 2c1(t)dX

1
t + 2c2(t)dX

0
t ,

dc3(t) = dX3
t + 2c1(t)dX

2
t + 3c2(t)dX

1
t + 3c3(t)dX

0
t ,

...

In [2], we regarded this hierarchy as a solution of a stochastic Lowener Kufarev equation,

which is an approach for constructions of measures on loops.

∗This work was supported by JSPS KAKENHI Grant Number 15K17562.



3. The Kirillov-Neretin polynomials

We denote by M the set of all holomorphic functions f : D̄ → C written as

f(z) = z(1 +
∞∑
n=1

cnz
n) for all z ∈ D.

The Kirillov-Neretin polynomials can be defined as follows:
∞∑
n=0

Pn(c1, . . . , cn)z
n = h

(zf ′(z)

f(z)

)2
+

cz2

12
S(f)(z), for all f ∈ M,

where S(f) is the Schwarzian derivative of f :

S(f)(z) :=
f ′′′(z)

f ′(z)
− 3

2

(f ′′(z)

f ′(z)

)2
.

In particular, if h = 0, then we have

P0 = P1(c1) = 0, P2(c1, c2) = γ2(c2 − c21), P3(c1, c2, c3) = γ3(c3 − 2c1c2 + c31),

P4(c1, c2, c3, c4) = γ4
(
c4 − 2c1c3 −

6

5
c22 +

17

5
c21c2 −

6

5
c41
)
, . . . ,

where γk :=
c
12
(k3 − k). We can find the formula for Virasoro algebra to act the Kirillov-

Neretin polynomials in [1], [4].

4. Martingales based on the Kirillov-Neretin polynomials

Now we put

Pn(t) := Pn(c1(t), . . . , cn(t)), n ∈ Z≥0.

The first few terms of the stochastic processes Pn(t) are as follows:

dP2(t) = γ2dX
2
t + 2P2(t)dX

0
t ,

dP3(t) = γ3dX
3
t + 4P2(t)dX

1
t + 3P3(t)dX

0
t ,

dP4(t) = γ4dX
4
t + 6P2(t)dX

2
t + 5P3(t)dX

1
t + 4P4(t)dX

0
t .

Then, we gain the following result.

Theorem 4.1. For all n = 0, 1, 2, . . .,

e−nt/α0Pn(t) is a (local) martingale.

Moreover, these martingales are generated by successive actions of the Witt algebra.
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On Convergence of Environment-Dependent Models

Isamu DÔKU
Department of Mathematics, Saitama University

Let Zd be a d-dimensional lattice, and each site on Zd is occupied by either one of the two

species. At each random time, a particle dies and is replaced by a new one, but the random

time and the type chosen of the species are assumed to be determined by the environment

conditions around the particle. The random function ηt : Zd → {0, 1} denotes the state at

time t, and each number of {0, 1} denotes the label of the type chosen of the two species. When

we set ∥y∥∞ := maxi yi, we define Nx := x+ {y : 0 < ∥y∥∞ 6 r}. For i = 0, 1, let fi(x, η)

be a frequency of type i in the neighborhood Nx of x for η. For non-negative parameters

αij ≥ 0, the dynamics of ηt is defined as follows. The state η makes transition 0 → 1 at rate

λf1(f0+α01f1)/(λf1+f0), and it makes transition 1 → 0 at rate f0(f1+α10f0)/(λf1+f0). The

exchange of particles after death is described in the form being proportional to the weighted

density between the two species, expressed by a parameter λ. For brevity’s sake we shall

treat a simple case λ = 1 only in what follows. For N = 1, 2, . . . , let mN ∈ N, and we

put ℓN := mN

√
N , and SN := Zd/ℓN . While, WN = (W 1

N , . . . , W d
N ) ∈ (Zd/mN ) \ {0} is

defined as a random vector satisfying (i) L(WN ) = L(−WN ); (ii) E(W i
NW

j
N ) → δijσ

2(≥ 0)

(as N → ∞); (iii) {|WN |2} (N ∈ N) is uniformly integrable. Here L(Y ) indicates the law of a

random variable Y . For the kernel pN (x) := P (WN/
√
N = x), x ∈ SN and η ∈ {0, 1}SN , we

define the scaled frequency fNi as

fNi (x, η) =
∑
y∈SN

pN (y − x)1{η(y)=i}, (i = 0, 1). (1)

We denote by ηNt the state determined by the scaled frequency depending on αNi and pN . On

this account, we may define the associated measure-valued process as

XN
t :=

1

N

∑
x∈SN

ηNt (x)δx. (2)

For the initial value XN
0 , we assume that supN ⟨XN

0 , 1⟩ < ∞ and XN
0 → X0 in MF (Rd) as

N → ∞, where MF (Rd) is the totality of all the finite measures on Rd, equipped with the

topology of weak convergence. Let {ξxt } be a continuous time random walk with rate N and

step distribution pN starting at a point x ∈ SN , and {ξ̂xt } be a continuous time coalescing

random walk with rate N and step distribution pN starting at a point x. For a finite set

A ⊂ SN , we denote by τ(A) the time when all the particles starting from A finally coalesce

1



into a single particle, that is to say, we define τ(A) := inf{t > 0 : #{ξ̂xt ; x ∈ A} = 1}. Take a
sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞. Moreover,

we suppose that when N → ∞,

N · P (ξ0εN = 0) → 0 and
∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (3)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (4)

and lim
N→∞

P (τ(A/ℓN ) 6 εN ) = ∃ζ(A) (5)

holds for any finite subset A ⊂ Zd.

Theorem. (cf.[1],[2]) When we denote the law of a measure-valued stochastic process XN
·

on the path space ΩD by PN , then there exists a probability measure P ∗ ∈ P(ΩC) such that

PN =⇒ P ∗
X0

(as N → ∞). (6)

Then there exists a MF (Rd)-valued stochastic process Xt = X 2γ,θ,σ2

t named a DW superpro-

cess with parameters 2γ, θ and σ2, satisfying that XN
t converges to X 2γ,θ,σ2

t as N → ∞ in

the sense of weak convergence for measures, and P ∗
X0

is the law of X 2γ,θ,σ2

t .
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Phase transitions in a control problem

Masaaki Fukasawa
Department of Mathematics, Osaka University

We consider the following controlled system of SDE

dXt = γdWt + dΛt,

dYt = XtdWt + d∥Λ∥t − βdt,

where β > 0 and γ , 0 are constants, W is a standard Brownian motion and ∥Λ∥
is the total variation of our control Λ that we require to be an adapted process
of finite variation. The problem, motivated by a financial practice of hedging
under transaction costs, is to minimize

lim sup
T→∞

1
T

E[Y2
T] = lim sup

T→∞

1
T

E[
∫ T

0
(X2

t − 2βYt)dt + 2
∫ T

0
Ytd∥Λ∥t].

This is a 2 dimensional stochastic control problem which is degenerate (both
the Brownian motion W and the control Λ are only one dimensional). The
optimal control is, by a formal dynamic programming principle, expected to
be a singular one which keeps (X,Y) inside a region; however we have not yet
had satisfactory results both from theoretical and practical points of view for
this original problem. In this talk, we focus on a restricted class of control

dΛ = −sgn(Xt)γ2c(Xt)dt + dLt − dRt,

where c is a nonnegative continuous even function on an interval [−b, b], b > 0
and L and R are nondecreasing processes with

dLt = 1{Xt=−b}dLt, dRt = 1{Xt=b}dRt (1)

which keep X stay in [−b, b]. Now our control is (b, c). The idea of the control
is to push X towards 0. The absolutely continuous part of Λ determined by c
pushes X regularly towards 0. The other parts, that turn out to be singularly
continuous, are active only when X reaches the boundary of [−b, b] and push X
to prevent it from going out of the interval. Such a control exists; in fact, there
exists a pathwise unique strong solution (X, L,R) of a Skorokhod SDE

dXt = γdWt − sgn(Xt)γ2c(Xt)dt + dLt − dRt

on [−b, b] when x 7→ −sgn(x)c(x) is one-sided Lipschitz. The control Λ is then
well-defined by (1). The optimal control in this restricted class is probably

1



suboptimal for the original problem; however it has a certain advantage in
its easy implementation. Also this type of control strategies has appeared in
a related context of optimal hedging. Now, we are no more sure about the
validity of the dynamic programming principle due to the constraint that the
controlΛ can only refer to the spot value of X. Although we can formally derive
an HJB type equation, it is far from a standard form and difficult to solve. Here
we present our results based on a probabilistic approach.

Theorem:

1. As T→∞,
1√
T

(YT − δb,cT)→N(0,Qb,c)

in law, where

δb,c =
γ2

a
− β, a = 2

∫ b

0
g(x)dx, g(x) = exp

{
−2

∫ x

0
c(y)dy

}
and

Qb,c =
2
a

∫ b

0
(x − γh(x))2g(x)dx, h(x) =

2
g(x)

∫ x

0

(
c(y) − 1

a

)
g(y)dy.

2.
lim
T→∞

1
T

E[(YT − δb,cT)2] = Qb,c.

3.

inf
δb,c=0

Qb,c = γ2η

(
γ

β

)
,

where

η(x) =


0 if − 2 < x ≤ 1,
4
3

(x+2)2(x−1)
x3(4−x) if 1 < x < 2,

1
12 (x + 2)2 if |x| ≥ 2.

The proof of the convergences is not difficult. The mathematically challenging
part is the minimization of Qb,c. We can give an explicit sequence of controls
(bn, cn) with δbn,cn = 0 such that Qbn,cn converges to the infimum. In fact, bn =
γ2/2β and cn = 0 when |γ| ≥ 2β. When |γ| < 2β on the other hand, bn → ∞ as
n→∞ and the pointwise limit of cn(x) is given by

c∞(x) =
γ + 2β

2(γ − βl)
1

γ + |x|1{|x|≥l}, l =
2(γ − β)+

4β − γ .

The key for the minimization is to show

inf
y∈Ya

∫ 1

0

(
y(u) + γ +

2γ
a

(u − 1)y′(u)
)2

du = γ2η(a/γ),

whereYa is the set of the convex functions on [0, 1] with y(0) = 0 and y′(0) = a/2.
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The rates of the Lp-convergence of the Euler-Maruyama and the
Wong-Zakai approximations of path-dependent stochastic differential

equations under the Lipschitz condition

Seiichiro Kusuoka
（Okayama University）

In this talk, we consider the Euler-Maruyama and the Wong-Zakai approximations of
path-dependent stochastic differential equations. We remark that the theorems below are
applicable to the Markov type stochastic differential equations with reflecting boundary
condition on sufficiently good domains.

First we consider the Euler-Maruyama approximation of path-dependent stochastic
differential equations. Let T > 0 and let ξ be an Rd-valued random variable. Consider
the following stochastic differential equation{

dXt = σ(t,X)dBt + b(t,X)dt
X0 = ξ

(1)

where σ is an Rd⊗Rr-valued function on [0, T ]×Cb([0, T ];Rd), b is an Rd-valued function
on [0, T ] × Cb([0, T ];Rd) and B is the r-dimensional Brownian motion. We assume the
Lipschitz continuity of the coefficients in the following sense.

|σ(t, w)− σ(t, w′)|Rd⊗Rr + |b(t, w)− b(t, w′)|Rd ≤ KT ∥w − w′∥C([0,t];Rd),

t ∈ [0, T ], w, w′ ∈ C([0, T ];Rd)
(2)

where KT is a constant depending on T . Then, the solution X to (1) exists, and has the
pathwise uniqueness. Let △ := {0 = t0 < t1 < · · · < tN = T} be a partition of the interval
[0, T ]. Define the approximations σ△, b△ of σ, b by

σ△(t, w) := σ(tk, w), b△(t, w) := b(tk, w), t ∈ [tk, tk+1)

for k = 0, 1, . . . , N − 1, and w ∈ C([0, T ];Rd). We consider the following stochastic
differential equation. {

dXEM
t = σ△(t,XEM)dBt + b△(t,XEM)dt

XEM
0 = ξ.

(3)

Then, (3) is the equation of the Euler-Maruyama approximation to (1). For a Hilbert
space H and a positive number K, we define a class of H-valued functions FK(H) by the
total set of h : [0, T ]× Cb([0, T ];Rd) → H such that

(F1) |h(t, w)|H ≤ K for t ∈ [0, T ], w ∈ C([0, T ];Rd).

(F2) |h(t, w)− h(s, w)|H ≤ K(
√
t− s+ ∥w(·+ s)− w(s)∥C([0,t−s];Rd))

for s, t ∈ [0, T ] such that s < t, and w ∈ C([0, T ];Rd).

(F3) |h(t, w)− h(t, w′)|H ≤ K∥w − w′∥C([0,t];Rd) for t ∈ [0, T ], w, w′ ∈ C([0, T ];Rd).

Then, we have the following theorem.

Theorem 1. Let σ ∈ FK(Rd ⊗ Rr) and b ∈ FK(Rd). Let X and XEM be the solutions
to (1) and to the equation of the Euler-Maruyama approximation (3), respectively. Then,
for p ∈ [1,∞) there exists a constant C independent of △ and N , such that

E
[∥∥X −XEM

∥∥p

C([0,T ];Rd)

]1/p
≤ C|△|1/2.



Next we consider the Wong-Zakai approximation of path-dependent stochastic differ-
ential equations. Let T > 0. Let A be a mapping from C([0, T ];Rd) to C([0, T ];Rd) such
that

(A1) ∥A(w)−A(w′)∥C([0,t];Rd) ≤ KA∥w−w′∥C([0,t];Rd) for t ∈ [0, T ], w, w′ ∈ C([0, T ];Rd).

(A2) |A(w)t −A(w)s|Rd ≤ KA

(√
t− s+ ∥w(·+ s)− w(s)∥C([0,t−s];Rd)

)
for s, t ∈ [0, T ] such that s < t, and w ∈ C([0, T ];Rd).

(A3) Var[0,t](A(w)) ≤ KA(1 + ∥w − w(0)∥C([0,t];Rd)) for t ∈ [0, T ], w ∈ C([0, T ];Rd).

where Var[0,t](w) is the total variation of w on [0, t], and let f ∈ C1,2([0, T ]×Rd;Rd) which

has the bounded derivatives. Define the mapping Γ : C([0, T ];Rd) → C([0, T ];Rd) by

(Γw)t := f(t, wt) +A(w)t, t ∈ [0, T ], w ∈ C([0, T ];Rd). (4)

Then, we have the Lipschitz continuity of Γ in the sense of (2). From (A2) and (4), we
have

|(Γw)t − (Γw)s|Rd ≤ (Kf +KA)
(√

t− s+ ∥w(·+ s)− w(s)∥C([0,t−s];Rd)

)
(5)

for s, t ∈ [0, T ] such that s < t, and w ∈ C([0, T ];Rd), where Kf is a constant depending
on the bounds of f and the derivatives of f . Let σ ∈ Cb([0, T ]×Rd×Rd;Rd⊗Rr) such that
σ(t, x, y) is differentiable with respect to x and y, and σ and the derivatives are Lipschitz
continuous. Let b ∈ Cb([0, T ]×C([0, T ];Rd);Rd) such that there exists a positive constant
Kb satisfying

|b(t, w)− b(t, w′)|Rd ≤ Kb∥w − w′∥C([0,t];Rd)

for t ∈ [0, T ], and w,w′ ∈ C([0, T ];Rd). Let ξ be an Rd-valued random variable. Consider
the following stochastic differential equation of the Stratonovich type{

dXt = σ(t,Xt, (ΓX)t) ◦ dBt + b(t,X)dt
X0 = ξ.

(6)

For a given partition △ := {0 = t0 < t1 < · · · < tN = T} of the interval [0, T ], we define
the piecewise linear approximation B△ of B by

B△
t := Btk +

t− tk
tk+1 − tk

(Btk+1 −Btk), t ∈ [tk, tk+1).

We define the equation of the Wong-Zakai approximation to (6) by{
dXWZ

t = σ(t,XWZ
t , (ΓXWZ)t)dB

△
t + b(t,XWZ)dt

XWZ
0 = ξ.

(7)

Then, we have the following theorem.

Theorem 2. Let σ and b as above. Let X and XWZ be the solutions to (6) and to the
equation of the Wong-Zakai approximation (7), respectively. Then, for p ∈ [1,∞) there
exists a constant C independent of △ and N , such that

E
[∥∥X −XWZ

∥∥p

C([0,T ];Rd)

]1/p
≤ C|△|1/2(1 + logN)1/2.



Lectures on approximate-flows and rough flows

It was realized in the late 70’s that stochastic differential equations not only define
individual trajectories, they also define flows of regular homeomorphisms, depending on
the regularity of the vector fields involved in the dynamics. This opened the door to the
study of stochastic flows of maps for themselves, and it did not took long time before Le Jan
and Watanabe clarified definitely the situation by showing that, in a semimartingale setting,
there is a one-to-one correspondence between flows of diffeomorphisms and time-varying
stochastic velocity fields, under proper regularity conditions on the objects involved. We
offered in the work [1] an embedding of the theory of semimartingale stochastic flows into
the theory of rough flows similar to the embedding of the theory of stochastic differential
equations into the theory of rough differential equations.

It is based on the "approximate flow-to-flow" machinery introduced in [2], which gives
body to the following fact. To a 2-index family (µts)06s6t6T of maps which falls short
from being a flow, in a quantitative way, one can associate a unique flow (ϕts)06s6t6T

close to (µts)06s6t6T ; moreover the flow ϕ depends continuously on the approximate flow
µ. The point about such a machinery is that approximate flows appear naturally in a
number of situations as simplified descriptions of complex evolutions, often under the form
of Taylor-like expansions of complicated dynamics. The model situation is given by a
controlled ordinary differential equation

(1) ẋt =
∑̀
i=1

Vi(xt) ḣ
i
t,

in Rd, driven by an R`-valued C1 control h. The Euler scheme

µts(x) = x+
(
hit − his

)
Vi(x)

defines, under proper regularity conditions on the vector fields, an approximate flow whose
associated flow is the flow generated by equation (1). One step farther, if we are given a
weak geometric Hölder p-rough path X, with 2 6 p < 3, and sufficiently regular vector
fields F =

(
V1, . . . , V`

)
on Rd, one can associate to the rough differential equation

(2) dxt = F(xt)X(dt),

some maps µts defined, for each 0 6 s 6 t 6 T , as the time 1 map of an ordinary differential
equation involving Xts, the Vi and their brackets, that have the same Taylor expansion as
the awaited Taylor expansion of a solution flow to equation (2). They happen to define
an approximate flow whose associated flow is the solution flow to equation (2).

A similar approach can be used to deal with a general class of stochastic time-dependent
velocity fields. We introduced for that purpose in [1] a notion of rough driver, that is
an enriched version of a time-dependent vector field, that will be given by the additional
datum of a time-dependent second order differential operator satisfying some algebraic
and analytic conditions. A notion of solution to a differential equation driven by a rough
driver will be given, in the line of what was done in [2]for rough differential equations,
and the approximate flow-to-flow machinery will be seen to lead to a clean and simple
well-posedness result for such equations. As awaited from the above discussion, the main
point of this result is that the Itô map, that associates to a rough driver the solution flow
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to its associated equation, is continuous. This continuity result is the key to deep results
in the theory of stochastic flows.

We proved indeed in [1] that reasonable semimartingale velocity fields can be lifted
to rough drivers under some mild boundedness and regularity conditions, and that the
solution flow associated to the ’semimartingale’ rough driver coincides almost surely with
the solution flow to the Kunita-type Stratonovich differential equation driven by the
velocity field. As a consequence of the continuity of the Itô map, a Wong-Zakai theorem
was proved for a general class of semimartingale velocity fields, together with sharp support
and large deviation theorems for Brownian flows.

These two lectures will introduce the audience to the core of the machinery of approxi-
mate and rough flows. The "approximate-flow-to-flow" machinery will be introduced in
lecture 1, and used to get back the basics of Lyons’ theory of rough differential equations.
Lecture 2 will set the scene of rough drivers and rough flows, with hints as to how on can
embed the theory of stochastic flows of homeomorphisms into the theory of rough flows.
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Convergence of Brownian motions on RCD spaces

Kohei Suzuki (Kyoto Univeristy)

1 Introduction & Result

In this talk, we consider the following problem:

(Q) Does the weak convergence of Brownian motions follow only from
geometrical convergence of the underlying spaces (or, vice versa)?

As a main result in this talk, we show that the weak convergence of the
laws of Brownian motions is equivalent to the measured Gromov–Hausdorff
(mGH) convergence of the underlying metric measure spaces under the fol-
lowing assumption:

Assumption 1.1 Let N,K and D be constants with 1 < N < ∞, K ∈ R
and 0 < D <∞. For n ∈ N := N ∪ {∞}, let Xn = (Xn, dn,mn) be a metric
measure space satisfying the RCD∗(K,N) condition with Diam(Xn) ≤ D
and mn(Xn) = 1.

Under Assumption 1.1, it is known that there exists a conservative Hunt
process on Xn associated with the Cheeger energy and unique in all starting
points in Xn. We denote it by ({Px

n}x∈Xn , {Bn
t }t≥0), called the Brownian

motion on Xn. We state our main theorem precisely:

Theorem 1.2 Suppose that Assumption 1.1 holds. Then the following state-
ments (i) and (ii) are equivalent:

(i) (mGH-convergence of the underlying spaces)

Xn converges to X∞ in the measured Gromov–Hausdorff sense.

(ii) (Weak convergence of the laws of Brownian motions)

There exist
a compact metric space (X, d)

isometric embeddings ιn : Xn → X (n ∈ N)

xn ∈ Xn (n ∈ N)

such that

ιn(B
n
· )#Pxn

n → ι∞(B∞
· )#Px∞

∞ weakly in P(C([0,∞);X)).

The subscript # means the operation of the push-forward of measures.
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RCD∗(K,N) (Riemannian Curvature-Dimension) spaces, introduced by
Erbar–Kuwada–Sturm [2], are metric measure spaces satisfying a generalized
notion of “Ricci ≥ K,dim ≤ N”, which include several important classes
of non-smooth spaces. For example, measured Gromov–Hausdorff (mGH)
limit spaces of complete Riemannian manifolds with Ricci ≥ K, dim = N ,
or Alexandrov spaces with Curv ≥ K/(N − 1),dim = N are included in
RCD∗(K,N) spaces.

Remark 1.3 We give comments to several related works.

(i) In [4], Ogura studied the weak convergence of the laws of the Brownian
motions on Riemannian manifolds by a different approach from this
talk. He push-forwarded all Brownian motions not to the ambient
space X, but to the limit space M∞ with respect to approximation
maps fn :Mn →M∞ of the Kasue–Kumura convergence with certain
time-discretization of Brownian motions.

More precisely, he assumed uniform upper bounds for heat kernels,
and the Kasue–Kumura spectral convergence ([3]) of the underlying
manifolds Mn. He push-forward each Brownian motions on Mn to the
Kasue–Kumura spectral limit space M∞ with respect to εn-isometry
fn :Mn →M∞, and show the convergence in law on the càdlàg space
of the push-forwarded and time-discretized Brownian motions onM∞.

(ii) In [1], Albeverio and Kusuoka studied diffusion processes associated
with SDEs on thin tubes in Rd shrinking to one-dimensional spider
graphs. They studied the weak convergence of these diffusions to one-
dimensional diffusions on the limit graphs. Their setting does not
satisfy the RCD∗(K,N) condition because Ricci curvatures are not
bounded below at points of conjunctions in spider graphs.
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KPZ EQUATION WITH FRACTIONAL DERIVATIVES OF

WHITE NOISE

MASATO HOSHINO

We discuss the stochastic partial differential equation

(1) ∂th(t, x) = ∂2xh(t, x) + (∂xh(t, x))
2 + ∂γxξ(t, x)

for (t, x) ∈ [0,∞)× T with γ ≥ 0. Here, ξ is a space-time white noise on [0,∞) ×
T and ∂γx = −(−∂2x)

γ
2 is the fractional derivative. When γ = 0, this equation

is called KPZ equation, which is proposed in [3] as a model of surface growth.
Hairer discussed the solvability of KPZ equation in [1]. He showed in [1] that the
renormalized equation

∂thϵ(t, x) = ∂2xhϵ(t, x) + (∂xhϵ(t, x))
2 − Cϵ + ξϵ(t, x),(2)

where ξϵ is a smooth approximation of ξ and Cϵ ∼ 1
ϵ is a sequence of constants, has

a unique limiting process h, which is independent of the way to approximate ξ.
Our goal is to make the noise rougher and see to what extent this theory works.

Because of the “local subcriticality” ([2]), we can expect that the similar results
hold if γ < 1

2 . However, we show that the renormalization like (2) is possible only

for 0 ≤ γ < 1
4 .

Theorem 1. Let ρ = ρ(t, x) be a function on R2 which is smooth, compactly
supported, symmetric in x, nonnegative, and satisfies

∫
R2 ρ(t, x)dtdx = 1. Let

0 ≤ γ < 1
4 and 0 < α < 1

2 − γ. Then there exists a sequence of constants Cϵ
such that

(1) We have Cϵ ≤ Cϵ−1−2γ for some constant C (depending on γ and ρ).
(2) For every initial condition h0 ∈ Cα(T), the sequence of solutions hϵ to the

equation:

∂thϵ(t, x) = ∂2xhϵ(t, x) + (∂xhϵ(t, x))
2 − Cϵ + ∂γxξϵ(t, x)

on (t, x) ∈ [0, T ) × T for some random time T , converges to a unique
stochastic process h, which is independent of the choice of ρ.

This convergence holds in probability in the uniform norm on all compact sets in
[0, T )× T and α-Hölder norm on all compact sets in (0, T )× T.
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Existence and uniqueness of strict solutions of stochastic linear

evolution equations in M-type 2 Banach spaces

Ta. Viê.t Tôn

(joint work with Yoshitaka Yamamoto and Atsushi Yagi)

Graduate School of Information Science, Osaka University

1. Introduction

We study non-autonomous abstract stochastic evolution equations of the
form

{

dX + A(t)Xdt = F (t)dt + G(t)dW (t), 0 < t ≤ T,

X(0) = ξ,
(1.1)

in a complex separable Banach space (E, ‖ · ‖) of M-type 2. Here, {A(t), t ≥
0} is a family of densely defined, closed linear operators in E; W (t) is a
cylindrical Wiener process on separable Hilbert space U and is defined on
a filtered probability space (Ω,F ,Ft, P); F is an E-valued predictable func-
tion; G is an L2(U ; E)-valued predictable function where L2(U ; E) denotes
the space of Hilbert-Schmidt operators; and ξ is an F0-measurable random
variable. We suppose that A, F and G satisfy the following structural as-
sumptions.

(A1) For all t ∈ [0, T ], the spectrum σ(A(t)) and the resolvent of A(t)
satisfy

σ(A(t)) ⊂ Σ$ = {λ ∈ C : | argλ| < $}

and

‖(λ − A(t))−1‖ ≤
M$

|λ|
, λ /∈ Σ$

with some constants $ ∈ (0, π
2 ) and M$ > 0.

(A2) There exists an exponent ν ∈ (0, 1] such that

D(A(s)) ⊂ D(A(t)ν), 0 ≤ s, t ≤ T.

(A3) There exist an exponent µ ∈ (1 − ν, 1] and a constant N > 0 such
that

‖A(t)ν[A(t)−1 − A(s)−1]‖ ≤ N |t − s|µ, 0 ≤ s, t ≤ T.

(F1) There exist β ∈ (0, 1] and 0 < σ < min{β, µ + ν − 1} such that
F ∈ Fβ,σ((0, T ]; E) a.s., where Fβ,σ((0, T ]; E) denotes the weighted
Hölder continuous function space.

(G1) There exist a constant δ > 1
2 and a square-integrable random variable

ζ such that

‖A(t)δG(t)− A(s)δG(s)‖L2(U ;E) ≤ ζ|t − s|σ a.s.

and E‖A(0)δG(0)‖2
L2(U ;E) < ∞.
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2. Main results

Theorem 2.1 (Uniqueness [1]). Let (A1), (A2), (A3) be satisfied. If there

exists a strict solution to the equation (1.1) then it is unique.

Theorem 2.2 (Existence [1]). Let (A1), (A2), (A3), (F1) and (G1) be

satisfied. Suppose that ξ ∈ D(A(0)β) a.s. and E‖A(0)βξ‖2 < ∞. Then there

exists a unique strict solution of (1.1) possessing the regularity:

AβX ∈ C([0, T ]; E), X ∈ Cγ1([0, T ]; E) a.s.

and

AX ∈ Cγ2([ε, T ]; E) a.s.

for every 0 < γ1 < min{β, 1
2}, 0 < γ2 < min{δ − 1

2 , σ} and ε ∈ (0, T ]. In

addition, X satisfies the estimate

E‖AβX(t)‖2 ≤C[E‖A(0)βξ‖2 + E‖F‖2
Fβ,σ

+ E‖A(0)δG(0)‖2
L2(U ;E)t

1−2(β−δ) + t1−2(β−δ)+2σ]

for the case β ≥ δ and

E‖AβX(t)‖2 ≤ C[E‖A(0)βξ‖2 + E‖F‖2
Fβ,σ + E‖A(0)δG(0)‖2

L2(U ;E)t + t1+2σ]

for the case β < δ. Furthermore, if A(0)δG(0) = 0 then

X ∈ Cγ1([0, T ]; E) for every 0 < γ1 < min{
1 + σ

2
, δ, β}.

In the favorable case ν = 1 (see (A2)), the condition (G1) in Theorem 2.2
can be replaced by a simplified one, say

(G1)’ There exist a constant δ1 >
1

2
and a square-integrable random

variable ζ̄ such that

‖A(0)δ1[G(t)− G(s)]‖L2(U ;E) ≤ ζ̄|t − s|σ a.s.

and E‖A(0)δ1G(t)‖2
L2(U ;E) < ∞ for every t ∈ [0, T ].

Theorem 2.3 ([1]). If (G1)’ takes place then so does (G1).
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On density function concerning discrete time maximum of some

one-dimensional diffusion processes

Tomonori Nakatsu (Ritsumeikan University)

1 Introduction

In this talk, we will show some results on the density functions related to discrete time maximum of some
one-dimensional diffusion processes. That is defined by Mn

T = max{Xt1 , · · · , Xtn} for a fixed time interval
[0, T ] and a time partition ∆n : 0 = t0 < t1 < · · · < tn−1 < tn < tn+1 = T for n ≥ 2, where {Xt, t ∈ [0,∞)}
denotes a one-dimensional diffusion process.

Firstly, we shall deal with the following one-dimensional stochastic differential equation (SDE),

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0,∞) (1)

where x0 ∈ R, b, σ : [0,∞) × R → R are measurable functions and {Wt, t ∈ [0,∞)} is a one-dimensional
standard Brownian motion.

The first goal of this talk is to prove an integration by parts (IBP) formula for the random vector (Mn
T , XT ).

That is the formula of the form E[∂βφ(M
n
T , XT )] = E[φ(Mn

T , XT )Hβ ] for a smooth function φ, where Hβ is a
certain random variable and E[·] denotes the expectation with respect to a certain probability measure. Then,
we will apply the IBP formula to study on the density function of (Mn

T , XT ).
The second goal is to obtain asymptotic behaviors of the density functions ofMn

T and (Mn
T , XT ) for Gaussian

processes. For this purpose, we shall consider the following multiple integral,

I(θ) :=

∫
R

f(x1, · · · , xn)e−θ
2ϕ(x1,··· ,xn)+k(θ)ψ(x1,··· ,xn)dx1 · · · dxn, (2)

where R =
∏n
i=1(−∞, di], di ∈ R for 1 ≤ i ≤ n and f, ϕ, ψ : Rn → R are measurable functions, then obtain

the asymptotic behavior of I(θ) as θ → ∞ by using the Laplace’s method. The result will be used to obtain
the asymptotic behaviors of the density functions. The process satisfying (1) where b, σ do not depend on the
space parameter, Brownian Bridge and Ornstein-Uhlenbeck process will be considered as the examples.

2 Main results

For b, σ of (1), we assume the following,
Assumption (A)

(A1) For t ∈ [0,∞), b(t, ·), σ(t, ·) ∈ C∞
b (R;R). Furthermore, all constants which bound the derivatives of

b(t, ·) and σ(t, ·) do not depend on t. In particular, let c(σ) be a constant which bounds |σ(t, x)|.

(A2) There exists c > 0 such that

|σ(t, x)| ≥ c

holds, for any x ∈ R and t ∈ [0,∞).

Theorem 1. Assume (A). Let G ∈ D∞. Then, for any multi index β ∈ {1, 2}k, k ≥ 1, there exists Hβ(G) ∈
D∞ such that

EP [∂βφ(M
n
T , XT )G] = EP [φ(Mn

T , XT )Hβ(G)] (3)

holds for arbitrary φ ∈ C∞
b (R2;R).
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For f, ϕ, ψ, k(θ) of (2), we assume the following,
Assumption (B)

(B1) ϕ ∈ C2(Rn;R) and ϕ attains its global minimum at a point x∗ = (x∗1, · · · , x∗n) ∈ R, in particular, we
assume that x∗j1 = dj1 , · · · , x∗jm = djm for 1 ≤ j1 < · · · < jm ≤ n, 0 ≤ m ≤ n and x∗i < di for other
1 ≤ i ≤ n.

(B2) There exist ai > 0 and bi ∈ R, 1 ≤ i ≤ n such that ϕ(x1, · · · , xn) ≥
∑n
i=1 aix

2
i +

∑n
i=1 bixi holds.

(B3) ψ ∈ C1(Rn;R) and there exist ci ≥ 0, 1 ≤ i ≤ n such that ψ(x1, · · · , xn) ≤
∑n
i=1 ci|xi| holds.

(B4) f ∈ C1(Rn;R) and there exist K1 > 0 and αi ≥ 0, 1 ≤ i ≤ n such that |f(x1, · · · , xn)| ≤ K1e
∑n

i=1 αix
2
i

holds. Moreover, we assume that f(x∗) ̸= 0.

(B5) k(θ) ≥ 0 and k(θ) = o((log(θ))2) hold.

Since Hessϕ(x∗) is a positive definite matrix, we may use the orthogonal matrix Q and the diagonal matrix
Λ satisfying Hessϕ(x∗) = QΛQT and we denote these components

Q =

q1,1 · · · q1,n
...

. . .
...

qn,1 · · · qn,n

 ,Λ =

λ1 . . .

λn

 , (4)

where λi > 0, 1 ≤ i ≤ n denote the eigenvalues of Hessϕ(x∗).
The main theorem in this section is following.

Theorem 2. Assume (B). Define w =
∫
C e

− 1
2

∑n
i=1 x

2
i dx, where C is given by

C =

{
(x1, · · · , xn) ∈ Rn

∣∣∣∣ n∑
k=1

qji,k√
λk
xk ≤ 0 (1 ≤ i ≤ m)

}
, (5)

for 1 ≤ m ≤ n and C = Rn for m = 0. Then, we have

I(θ) ∼ w
f(x∗)

|Hessϕ(x∗)| 12
e
−θ2ϕ(x∗)+k(θ)ψ(x∗)+

k(θ)2

2θ2

∑n
i=1

1
λi

(
∑n

j=1 ∂iψ(x
∗)qj,i)

2

θn
, θ → ∞. (6)
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Error analysis for approximations to one-dimensional SDEs

via perturbation method ∗

Nobuaki Naganuma (Mathematical Institute, Tohoku University)

1 Introduction and main result

For a one-dimensional fractional Brownian motion (fBm) B with the Hurst 1/3 < H < 1, we
consider a one-dimensional stochastic differential equation (SDE)

Xt = x0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) d
◦Bs, t ∈ [0, 1],(1)

where x0 ∈ R is a deterministic initial value and d◦B stands for the symmetric integral in the sense
of Russo-Vallois. In order to approximate the solution to (1), we consider the Crank-Nicholson
scheme as real-valued stochastic process on the interval [0, 1]. In this talk, we study asymptotic
error distributions of the scheme.

In what follows, we assume that the coefficients b and σ in (1) are smooth and they are bounded
together with all their derivatives. We give the definition of the Crank-Nicholson scheme for the
m-th dyadic partition {τmk = k2−m}2mk=0:

Definition 1.1 (The Crank-Nicholson scheme). For every m ∈ N, the Crank-Nicholson scheme
XCN(m) : [0, 1] → R is defined by a solution to an equation

X
CN(m)
0 = x0,

X
CN(m)
t = X

CN(m)
τm
k−1

+
1

2

{
b(X

CN(m)
τm
k−1

) + b(X
CN(m)
t )

}
(t− τmk−1)

+
1

2

{
σ(X

CN(m)
τm
k−1

) + σ(X
CN(m)
t )

}
(Bt −Bτm

k−1
) for τmk−1 < t ≤ τmk .

Since the Crank-Nicholson scheme is an implicit scheme, we need to restrict the domain of it
and assure the existence of a solution to the equation above. Roughly speaking, the existence of
the solution is ensured for large m.

In order to state our main result concisely, we set w = σb′ − σ′b and

Jt = exp

(∫ t

0

b′(Xu) du+

∫ t

0

σ′(Xu) d
◦Bu

)
.

We assume the following hypothesis in order to obtain an expression of the error of the scheme:
∗This talk is based on a joint work with Professor Shigeki Aida.
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Hypothesis 1.2. inf σ > 0.

The following is our main result:

Theorem 1.3. Assume that Hypothesis 1.2 is satisfied. For 1/3 < H < 1/2, we have

lim
m→∞

2m(3H−1/2){XCN(m) −X} = σ(X)U + J

∫ ·

0

J−1
s w(Xs)Us ds

weakly with respect to the uniform norm. Here U a stochastic process defined by

Ut = σ3,H

∫ t

0

f0,3(Xu) dWu,(2)

where σ3,H is a positive constant, f0,3 = (σ2)′′/24 and W is a standard Brownian motion indepen-
dent of B.

2 Sketch of proof

We explain the concept of perturbation method and give a sketch of proof of our main theorem.
The idea of perturbation method is to find a piecewise linear stochastic process h̃ ≡ h̃(m) :

[0, 1] → R such that Xx0,B+h̃
τm
k

= X
CN(m)
τm
k

for every k = 1, . . . , 2m, where Xx0,B+h̃ is a solution to

an SDE with the same initial value x0 and a perturbed driver B + h̃, that is,

Xx0,B+h̃
t = x0 +

∫ t

0

b(Xx0,B+h̃
s ) ds+

∫ t

0

σ(Xx0,B+h̃
s ) d◦(B + h̃)s.

Under Hypothesis 1.2, we see unique existence of h̃ and obtain an expression of it.
From the expression of h̃(m) and the Lipschitz continuity of the solution map B 7→ Xx0,B , we

construct a piecewise linear function h ≡ h(m) : [0, 1] → R such that (a) 2m(3H−1/2)h(m) converges
to U defined by (2) and (b) h̃(m)−h(m) is negligible. We can show Assertion (a) by using the fourth
moment theorem. Assertion (b) is a nontrivial part in our proof. In order to justify Assertion (b),
we need the following step:

(D1) estimate δ(m) = max1≤k≤2m |XCN(m)
τm
k

−Xx0,B
τm
k

| from the definition of the scheme,

(H1) estimate ∥h̃(m)−h(m)∥∞ by a quantity involving δ(m) from the construction of h̃(m) and h(m),

(D2) estimate δ(m) by a quantity involving δ(m) itself from (H1),

(D3) show a sharp estimate of δ(m) by using (D2) repeatedly and (D1),

(H2) show Assertion (b) from (D3) and (H1).

For simplicity, we explain how to see the asymptotic error distribution of X
CN(m)
1 −Xx0,B

1 . By
using the properties of h(m) and the decomposition

X
CN(m)
1 −Xx0,B

1 = Xx0,B+h̃(m)

1 −Xx0,B
1

= ∇h(m)X
x0,B
1 + {Xx0,B+h̃(m)

1 −Xx0,B+h(m)

1 }+ {Xx0,B+h(m)

1 −Xx0,B
1 −∇h(m)X

x0,B
1 },

we see Theorem 1.3. In fact, Assertion (a) implies that the first term converges to a nontrivial

process, that is, 2m(3H−1/2)∇h(m)X
x0,B
1 = ∇2m(3H−1/2)h(m)X

x0,B
1 → ∇UX

x0,B
1 as m → ∞. The

convergences of the second and third term to 0 follow from Assertion (a) and (b), respectively.
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Parametrix method for skew diffusion

Dai Taguchi (Ritsumeikan University)
joint work with

Arturo Kohatsu-Higa (Ritsumeikan University)
Jie Zhong (University of Central Florida)

A skew diffusion is the unique solution of the following one-dimensional stochastic differential
equation with local time:

Xt(x) = x+

∫ t

0

b(Xs(x))ds+

∫ t

0

σ(Xs(x))dWs + (2α− 1)L0
t (X), t ∈ [0, T ], α ∈ (0, 1), (1)

where W is a one-dimensional standard Brownian motion. The stochastic process L0(X) is a
symmetric local time of X at the origin, that is L0

t (X) is defined by

L0
t (X) := lim

ε→0

1

2ε

∫ t

0

1[−ε,ε](Xs)d〈X〉s.

The simplest example of skew diffusion process is a skew Brownian motion which is the solution
of (1) with b = 0 and σ = 1. Harrison and Shepp [3] proved that if |2α − 1| ≤ 1 then there is a
unique strong solution and if |2α− 1| > 1 and x0 = 0, there is no solution. The idea of the proof is
a transformation technique to relate (1) with another stochastic differential equation without local
time and with discontinuous diffusion coefficient.

In this talk, we prove that the existence and a Gaussian upper bound for the density of a skew
diffusion. The idea of proof is the parametrix method for the semigroup Ptf(x) := E[f(Xt(x))]
which is a “Taylor-like expansion”. Using the “Backward” parametrix method which is introduced
in [2] and [1], we prove the expansion for the semigroup of SDE associated to (1) and its density,
under the condition that the drift coefficient is bounded, measurable and the diffusion coefficient is
bounded, uniformly elliptic and Hölder continuous. We also obtain the similar expansion for skew
diffusion.

In this talk, we also consider a probabilistic representation which can be used Monte Carlo
simulation and/or infinite dimensional analysis. More precisely, the parametrix expansion for the
density of XT , pT (x, .), leads to that for given p ≥ 1, there exists a random variable H(T, x, y)
such that for any (x, y) ∈ R \ {0} × R,

pT (x, y) = E[H(T, x, y)] and E[|H(T, x, y)|p] <∞.
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Regularization of Generalized Wiener
Functionals by Bochner Integral

Takafumi Amaba[1
1Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577,

Japan

The local time (at zero) of the one-dimensional Wiener process w =
(w(t))t≥0 starting from zero is heuristically written as

(1) “

∫ t

0

δ0(w(s))ds”

and is rigorously formulated by

lim
ε→0

∫ t

0

ϕε(w(s))ds

with using rapidly decreasing functions {ϕε}ε>0 which tends to Dirac’s
delta function δ0 in the space of Schwartz distributions.

In this talk, we formulate (1) directly as a Bochner integral. It is
well known that δ0(w(t)) makes sense as a generalized Wiener func-

tional (see Watanabe [4]) and belongs to D(−1/2)−ε
2 for each ε > 0. (see

Nualart-Vives [2], Watanabe [5, 6]). For our objective, we need to
consider the Bochner integrability of the mapping

(2) (0, t] 3 s 7→ δ0(w(s)) ∈ D(−1/2)−ε
2 .

Note that δ0(w(0)) does not make sense as a generalized Wiener func-
tional, and hence the Bochner integrability does not follow only from
the continuity of the mapping t 7→ δ0(w(t)).

When succeeded in seeing the Bochner integrability of the mapping
(2), the Bochner integral

∫ t

0
δ0(w(s))ds makes sense as an element in

D−(1/2)−ε
2 for ε > 0. However, the local time is known to be a classical

Wiener functional, so that it should be in D0
2 = L2. Hence, the Bochner

integral should pose a sort of “regularizing effect”. This phenomenon
might be a common understanding at the level of intuition for most of
us, but there have not been literatures on this subject except for the
case of local times.

Denote by S ′(R) the space of Schwartz distributions on R. The
following is the prototype of this study:

Theorem 1. Let Λ ∈ S ′(R), t > 0 and s ∈ R. If Λ(w(t)) ∈ Ds
2 then

the mapping

(0, t] 3 u 7→
√

t

u
Λ
(√ t

u
w(u)

)
∈ Ds

2

[The author was supported by JSPS KAKENHI Grant Number 15K17562.
fm-amaba@fc.ritsumei.ac.jp
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2

is Bochner integrable in Ds
2 and we have∫ t

0

√
t

u
Λ
(√ t

u
w(u)

)
du ∈ Ds+1

2 .

From this we obtain
∫ t

0
δ0(w(u))du ∈ D(1/2)−ε

2 for each ε > 0 which
agrees with the results in [2, 3, 6].

The proof of the above theorem is obtained by looking at all chaos
appearing in the Itô-Wiener expansion for Λ((t/u)1/2w(u)) and relies
on their explicit forms, so that it is hard to obtain a similar result for
diffusion processes.

We will consider a similar “regularizing effect” for
∫ t

0
δ0(X(s, x, w))ds

from purely Malliavin calculus-viewpoint, whereX(t, x, w) is the unique
strong solution to a one-dimensional stochastic differential equation

dXt = σ(Xt)dw(t) + b(Xt)dt.

Although we have not succeed to obtain a similar result to above, we
can show the Bochner integrability of the mapping u 7→ δ0(X(u, x, w))

and that
∫ t

0
δ0(X(u, x, w))du ∈ L2. The proof is based on Itô’s formula

for generalized Wiener functionals which is a slight extension of Kubo
[1].
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Large deviations for rough path lifts of
Donsker–Watanabe’s delta functions

Yuzuru Inahama (Kyushu University)

In 1993 Takanobu and Watanabe presented a large deviation principle (LDP) of
Freidlin–Wentzell type for solutions of stochastic differential equations (SDEs) under
the strong Hörmander condition anywhere. Unlike in the usual LDP of this type, the
probability measures are not the push-forwards of the (scaled) Wiener measure, but the
push-forwards of the measures of finite energy which is defined by the composition of
the solutions of SDEs and the delta functions (i.e., Watanabe’s pullbacks of the delta
functions, also known as Donsker’s delta function). One interpretation of this LDP is a
generalization of the LDP of Freidlin–Wentzell type for pinned diffusion measures. This
LDP looks very nice. To the author’s knowledge, however, no proof has been given yet.
In this talk we reformulate this LDP on the geometric rough path space by lifting these
measures to the rough path sense and prove it rigorously by using quasi-sure analysis
(which is a kind of potential theory in Malliavin calculus). Then, we obtain the LDP in
Takanobu–Watanabe (1993) as a simple corollary of our main result. As a special case
of this corollary, we also obtain the LDP for pinned diffusion measures under the strong
Hörmander condition anywhere. (Even this one might be new.)
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