Large time asymptotics for Feynman-Kac functionals of symmetric stable processes

Masaki Wada (Mathematical Institute, Tohoku University)

September 25, 2014

Let $\{X_t\}$ be the rotationally invariant α -stable process on \mathbb{R}^d with $0 < \alpha < 2$ and denote by $(\mathscr{E}, \mathscr{F})$ the corresponding Dirichlet form on $L^2(\mathbb{R}^d)$. We assume $\alpha < d$, transience of $\{X_t\}$ and denote the Green kernel by G(x, y). Let μ be a positive Radon smooth measure satisfying Green-tightness and define the Schrödinger form \mathscr{E}^{μ} by $\mathscr{E}^{\mu}(u, v) = \mathscr{E}(u, v) - \langle u, v \rangle_{\mu} \equiv \langle -\mathscr{L}^{\mu}u, v \rangle$. Denoting by A_t^{μ} the positive continuous additive functional in the Revuz correspondence with μ , we have

$$\int_{\mathbb{R}^d} p^{\mu}(t, x, y) dy = \mathbb{E}_x[\exp(A_t^{\mu})].$$
⁽¹⁾

Here $p^{\mu}(t, x, y)$ is the fundamental solution of the equation $\partial u/\partial t = \mathscr{L}^{\mu}u$. We call the right hand side of (1) *Feynman-Kac functional*. In this talk, we consider the large time asymptotics for $\mathbb{E}_x[\exp(A_t^{\mu})]$. This is a jointly work with Professor Masayoshi Takeda.

We define the spectral bottom of the time changed process for $\{X_t\}$ by μ as follows:

$$\lambda(\mu) = \inf \{ \mathscr{E}(u, u) \mid u \in \mathscr{F}_e, \quad \langle u, u \rangle_{\mu} = 1 \}$$

where \mathscr{F}_e is the extended Dirichlet space. Note that $\lambda(\mu)$ represents the smallness of μ . If $\lambda(\mu) > 1$, μ is said to be *subcritical*. Takeda [3] showed that μ is subcritical if and only if $\sup_{x \in \mathbb{R}^d} \mathbb{E}_x[\exp(A_{\infty}^{\mu})] < \infty$. Moreover, if μ is of 0-order finite energy integral,

this condition is also equivalent to the stability of fundamental solution, i.e. $p^{\mu}(t,x,y)$ admits the same two-sided estimates as the transition density function of $\{X_t\}$ up to positive multiple constants ([5]).

If $\lambda(\mu) < 1$, μ is said to be *supercritical*. The supercriticality of μ is equivalent to

$$C(\mu) := -\inf\{\mathscr{E}^{\mu}(u, u) \mid u \in \mathscr{F}, \quad \langle u, u \rangle = 1\} > 0$$

and this is the principal eigenvalue of \mathscr{L}^{μ} . Via Fukushima's ergodic theorem, Takeda [4] showed $\mathbb{E}_x[\exp(A_t^{\mu})] \sim c_1 h(x) \exp(C(\mu)t)$ where h(x) is the eigenfunction corresponding to the principal eigenvalue.

If $\lambda(\mu) = 1$, μ is said to be *critical*. In this case $C(\mu) = 0$ and the growth of $\mathbb{E}_x[\exp(A_t^{\mu})]$ is not exponential. Simon [2] and Cranston, Koralov et al. [1] treated the same problem for Brownian motion. They gave a concrete growth order of $\mathbb{E}_x[\exp(A_t^{\mu})]$ depending on *d* for absolutely continuous μ with some additional conditions. For the

proof, they first gave the asymptotic expansion of the β -order resolvent $G_{\beta}(x, y)$ as $\beta \to 0$ using the Hankel functions. The Schrödinger resolvent $\{G_{\beta}^{\mu}\}$ is expressed through

 G_{β} and the resolvent equation. Since it follows that $\mathbb{E}_{x}[\exp(A_{t}^{\mu})] = 1 + \int_{0}^{t} P_{s}^{\mu} \mu ds$ for the Schrödinger semigroup $\{P_{s}^{\mu}\}$, their results follow via Tauberian theorem and the behavior of $G_{\beta}^{\mu}\mu$ as $\beta \to 0$.

In our framework, we impose only compactness on μ and thus need some improvements of their methods. First, we cannot express the resolvent kernel of the α -stable processes through special functions. The expression of the transition density function and some calculations enable us to obtain

$$G_{\beta}(x,y) = G_{0}(x,y) - c_{1}k(\beta)|x-y|^{(2\alpha-d)\wedge 0} + E_{\beta}(x,y).$$

Here $k(\beta)$ is a function depending on d/α and $E_{\beta}(x,y)$ has smaller order than $k(\beta)$. Secondary, we consider the time changed process by μ for β -killed process of $\{X_t\}$ to obtain the representation of $G^{\mu}_{\beta}\mu$, since μ is not necessarily absolutely continuous. The Green operator of this process is given by $f \to \int_{\mathbb{R}^d} G_{\beta}(\cdot, y) f(y) \mu(dy)$, and a compact operator on $L^2(\mu)$. Thus, we can apply the perturbation theory and conclude that

 $k(\beta)G^{\mu}_{\beta}\mu$ converges \mathscr{E} -weakly as $\beta \to 0$. Since P^{μ}_{ε} admits Green-tight integral kernel, we can strengthen this convergence to pointwise one and obtain the following result:

Theorem 1. (Takeda-W. 2014)

Suppose $\{X_t\}$ is the transient, rotationally invariant α -stable process and μ is a critical measure with compact support. As $t \to \infty$, Feynman-Kac functional satisfies

$$\mathbb{E}_{x}[\exp(A_{t}^{\mu})] \sim \begin{cases} c_{1}h_{0}(x)t^{d/\alpha-1} & (1 < d/\alpha < 2), \\ c_{2}h_{0}(x)t/\log t & (d/\alpha = 2), \\ c_{3}h_{0}(x)t & (d/\alpha > 2), \end{cases}$$

where $h_0(x)$ is the ground state of \mathcal{E}^{μ} .

References

- Cranston, M., Koralov, L., Molchanov, S., Vainberg, B.: Continuous model for homopolymers, Journal of Funct. Anal. 256, 2656-2696, (2009).
- [2] Simon, B.: Large time behavior of the L^p norm of Schrödinger semigroups, Journal of Functional analysis 40, (1981), 66–83.
- [3] Takeda, M.: Gaugeability for Feynman-Kac functionals with applications to symmetric α -stable processes, Proc. Amer. Math. Soc. 134, 2729–2738, (2006).
- [4] Takeda, M.: Large deviations for additive functionals of symmetric stable processes, J. Theor. Probab. 21, 336–355, (2008)
- [5] Wada, M.: Perturbation of Dirichlet forms and stability of fundamental solutions, Tohoku Math. Journal, to appear.