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Let {Xt} be the rotationally invariantα-stable process onRd with 0< α < 2 and
denote by(E ,F ) the corresponding Dirichlet form onL2(Rd). We assumeα < d,
transience of{Xt} and denote the Green kernel byG(x,y). Let µ be a positive Radon
smooth measure satisfying Green-tightness and define the Schrödinger formE µ by
E µ(u,v) = E (u,v)− ⟨u,v⟩µ ≡ ⟨−L µu,v⟩. Denoting byAµ

t the positive continuous
additive functional in the Revuz correspondence withµ, we have∫

Rd
pµ(t,x,y)dy= Ex[exp(Aµ

t )]. (1)

Herepµ(t,x,y) is the fundamental solution of the equation∂u/∂ t = L µu. We call the
right hand side of (1)Feynman-Kac functional. In this talk, we consider the large time
asymptotics forEx[exp(Aµ

t )]. This is a jointly work with Professor Masayoshi Takeda.
We define the spectral bottom of the time changed process for{Xt} by µ as follows:

λ (µ) = inf{E (u,u) | u∈ Fe, ⟨u,u⟩µ = 1},

whereFe is the extended Dirichlet space. Note thatλ (µ) represents the smallness of
µ. If λ (µ) > 1, µ is said to besubcritical. Takeda [3] showed thatµ is subcritical if
and only if sup

x∈Rd
Ex[exp(Aµ

∞)] < ∞. Moreover, ifµ is of 0-order finite energy integral,

this condition is also equivalent to the stability of fundamental solution, i.e.pµ(t,x,y)
admits the same two-sided estimates as the transition density function of{Xt} up to
positive multiple constants ([5]).

If λ (µ)< 1, µ is said to besupercritical. The supercriticality ofµ is equivalent to

C(µ) :=− inf{E µ(u,u) | u∈ F , ⟨u,u⟩= 1}> 0

and this is the principal eigenvalue ofL µ . Via Fukushima’s ergodic theorem, Takeda
[4] showedEx[exp(Aµ

t )] ∼ c1h(x)exp(C(µ)t) whereh(x) is the eigenfunction corre-
sponding to the principal eigenvalue.

If λ (µ) = 1, µ is said to becritical. In this caseC(µ) = 0 and the growth of
Ex[exp(Aµ

t )] is not exponential. Simon [2] and Cranston, Koralov et al. [1] treated the
same problem for Brownian motion. They gave a concrete growth order ofEx[exp(Aµ

t )]
depending ond for absolutely continuousµ with some additional conditions. For the
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proof, they first gave the asymptotic expansion of theβ -order resolventGβ (x,y) asβ →
0 using the Hankel functions. The Schrödinger resolvent{Gµ

β} is expressed through

Gβ and the resolvent equation. Since it follows thatEx[exp(Aµ
t )] = 1+

∫ t

0
Pµ

s µds for

the Schr̈odinger semigroup{Pµ
s }, their results follow via Tauberian theorem and the

behavior ofGµ
β µ asβ → 0.

In our framework, we impose only compactness onµ and thus need some improve-
ments of their methods. First, we cannot express the resolvent kernel of theα-stable
processes through special functions. The expression of the transition density function
and some calculations enable us to obtain

Gβ (x,y) = G0(x,y)−c1k(β )|x−y|(2α−d)∧0+Eβ (x,y).

Herek(β ) is a function depending ond/α andEβ (x,y) has smaller order thank(β ).
Secondary, we consider the time changed process byµ for β -killed process of{Xt}
to obtain the representation ofGµ

β µ, sinceµ is not necessarily absolutely continuous.

The Green operator of this process is given byf →
∫
Rd

Gβ (·,y) f (y)µ(dy), and a com-

pact operator onL2(µ). Thus, we can apply the perturbation theory and conclude that
k(β )Gµ

β µ convergesE -weakly asβ → 0. SincePµ
ε admits Green-tight integral kernel,

we can strengthen this convergence to pointwise one and obtain the following result:

Theorem 1. (Takeda-W. 2014)
Suppose{Xt} is the transient, rotationally invariantα-stable process andµ is a critical
measure with compact support. As t→ ∞, Feynman-Kac functional satisfies

Ex[exp(Aµ
t )]∼


c1h0(x)td/α−1 (1< d/α < 2),

c2h0(x)t/ logt (d/α = 2),

c3h0(x)t (d/α > 2),

where h0(x) is the ground state ofE µ .
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