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1 Introduction

In this talk, firstly, we shall deal with the following one-dimensional stochastic differential equation (SDE),

t t
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where b, 0 : [0,00) Xx R — R are measurable functions and {W;,t € [0,00)} denotes a one-dimensional standard
Brownian motion defined on a probability space (2, F, P). We will consider discrete time maximum and con-
tinuous time maximum which are defined by M} := max{X,,,--- , X;, } and My := maxo<;<7 X, respectively,
where the time interval [0, T] and the time partition 0 <t} < --- < t, =T, n > 2 are fixed.

Secondly, we will deal with the following d-dimensional SDE,
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where V' : R? -5 R, 0<j <d,1<i<dare measurable functions and odWW7 denotes the Stratonovich integral
with respect to a d-dimensional standard Brownian motion {W; = (W}, --- W) ¢t € [0,00)} defined on a
probability space (', F', P'). For this d-dimensional SDE, we shall consider the random variable defined by
My = max{Z+, -+, Z4}, where T > 0 is fixed.

In this talk, we say that an integration by parts (IBP) formula for random variables F' and G holds if there
exists a random variable H(F; G) such that EX[p/(F)G] = E¥[p(F)H(F;G)] holds for any ¢ in a class of C*
functions, where ET[-] denotes the expectation with respect to a probability measure P. The IBP formula is
usually used to obtain expressions and upper bounds of the probability density function of F' by taking G = 1.
Meanwhile, in finance, IBP formulas play an important role in order to compute the risks of financial products,
called greeks (see [1], for example).

Our goal is to prove IBP formulas for M7, My and My, in addition, to obtain the expressions and upper
bounds of their probability density functions by means of the IBP formulas.

2 Main results

Assumption (A)

(A1) Fort € [0,00), b(t,"),0(t,-) € CZ(R;R). Furthermore, all constants which bound the derivatives of b(, -)
and o(t,-) do not depend on ¢.

(A2) There exists ¢ > 0 such that
lo(t, )| > ¢
holds, for any € R and ¢ € [0, 00).

Theorem 1. Assume (A). Let G € DY and assume t; > 0. Then there exists a random variable H%(G)
such that H(G) belongs to LP(Q), F, P) for any p > 1, and

E" ¢ (M7)G] = BV [p(M})HE(G)] (2)
holds for any ¢ € C}(R;R).



Remark 1. In the case that t; =0, (2) in Theorem 1 is valid for any ¢ € C}(R;R) whose support is included
in (xg,00).

Assumption (A)’
We assume that the diffusion coefficient of (1) is of the form o(t,z) = 01(t)o2(x) and the following assump-
tion.

(A1)’ For t € [0,00), b(t,-) € CZ(R;R). Furthermore, all constants which bound the derivatives of b(t,-) do
not depend on t.

(A2)’ o1(+) € CP(]0,00); R) and there exists ¢; > 0 such that |o1(t)| > ¢ for any ¢ € [0, 00).

(A3)’ 02(+) € C}(R; R, )(respectively, C3(R;R_)), @ — o2(x) is increasing (respectively, decreasing) and there
exists ¢z > 0 such that |o2(z)| > ¢ for any z € R.

Theorem 2. Assume (A)’. Let G € D> and ag > xq be fized arbitrarily. Then there ezists a random variable
Hp (G, ap) such that Hp (G, ag) belongs to LP(Q, F, P) for any p > 1, and

E" [¢'(Mr)G] = E”[p(Mr)Hr (G, a)]
holds for any ¢ € C}(R;R) whose support is included in (ag, o0).
Define
a(z) :=VVT(z),

for z € R?, where V7 is the transpose matrix for V.
Assumption (B)

(B1) For each 1 <i,j <d, V}(:) € C}(R%R).
(B2) There exists ¢ > 0 such that
(€, a(2)€) > cleP?,

holds for any z, & € RY.

(B3) Vector fields V4, - -,V are commutative, that is
Vi Vil(a) = V;, Vil (@), 1 < dj < d

hold for any € RY, where we have defined the Lie bracket by [V;, V;](z) := VV;V;(z) — VViV;(z).
(B4) For each 1 <i,j <d, (V71)i(:) € Cj (R R).
(B5) For each 1 <i <d, V§(-) € CL(R%R).

Theorem 3. Assume (B). Then there exists a random variable Hp such that Hp belongs to LP (Y, F', P') for
any p>1, and

B[/ (Mr)] = B [p(Mr) Hr]
holds for any ¢ € C}(R;R).
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