Integration by parts formulas concerning maxima of some SDEs with applications

Tomonori Nakatsu (Ritsumeikan University)

1 Introduction

In this talk, firstly, we shall deal with the following one-dimensional stochastic differential equation (SDE),

$$X_{t} = x_{0} + \int_{0}^{t} b(s, X_{s})ds + \int_{0}^{t} \sigma(s, X_{s})dW_{s},$$
(1)

where $b, \sigma : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ are measurable functions and $\{W_t, t \in [0, \infty)\}$ denotes a one-dimensional standard Brownian motion defined on a probability space (Ω, \mathcal{F}, P) . We will consider discrete time maximum and continuous time maximum which are defined by $M_T^n := \max\{X_{t_1}, \cdots, X_{t_n}\}$ and $M_T := \max_{0 \le t \le T} X_t$, respectively, where the time interval [0, T] and the time partition $0 \le t_1 < \cdots < t_n = T$, $n \ge 2$ are fixed.

Secondly, we will deal with the following *d*-dimensional SDE,

$$Z_t^i = z_0^i + \int_0^t V_0^i(Z_s) ds + \sum_{j=1}^d \int_0^t V_j^i(Z_s) \circ dW_s^j, \ 1 \le i \le d.$$

where $V_j^i : \mathbb{R}^d \to \mathbb{R}, 0 \le j \le d, 1 \le i \le d$ are measurable functions and $\circ dW^j$ denotes the Stratonovich integral with respect to a *d*-dimensional standard Brownian motion $\{W_t = (W_t^1, \cdots, W_t^d), t \in [0, \infty)\}$ defined on a probability space $(\Omega', \mathcal{F}', P')$. For this *d*-dimensional SDE, we shall consider the random variable defined by $\hat{M}_T := \max\{Z_T^1, \cdots, Z_T^d\}$, where T > 0 is fixed.

In this talk, we say that an integration by parts (IBP) formula for random variables F and G holds if there exists a random variable H(F;G) such that $E^P[\varphi'(F)G] = E^P[\varphi(F)H(F;G)]$ holds for any φ in a class of C^1 functions, where $E^P[\cdot]$ denotes the expectation with respect to a probability measure P. The IBP formula is usually used to obtain expressions and upper bounds of the probability density function of F by taking G = 1. Meanwhile, in finance, IBP formulas play an important role in order to compute the risks of financial products, called greeks (see [1], for example).

Our goal is to prove IBP formulas for M_T^n , M_T and \hat{M}_T , in addition, to obtain the expressions and upper bounds of their probability density functions by means of the IBP formulas.

2 Main results

Assumption (A)

- (A1) For $t \in [0, \infty)$, $b(t, \cdot), \sigma(t, \cdot) \in C_b^2(\mathbb{R}; \mathbb{R})$. Furthermore, all constants which bound the derivatives of $b(t, \cdot)$ and $\sigma(t, \cdot)$ do not depend on t.
- (A2) There exists c > 0 such that

$$|\sigma(t, x)| \ge c$$

holds, for any $x \in \mathbb{R}$ and $t \in [0, \infty)$.

Theorem 1. Assume (A). Let $G \in \mathbb{D}^{1,\infty}$ and assume $t_1 > 0$. Then there exists a random variable $H^n_T(G)$ such that $H^n_T(G)$ belongs to $L^p(\Omega, \mathcal{F}, P)$ for any $p \ge 1$, and

$$E^{P}\left[\varphi'(M_{T}^{n})G\right] = E^{P}\left[\varphi(M_{T}^{n})H_{T}^{n}(G)\right]$$

$$\tag{2}$$

holds for any $\varphi \in C_b^1(\mathbb{R}; \mathbb{R})$.

Remark 1. In the case that $t_1 = 0$, (2) in Theorem 1 is valid for any $\varphi \in C_b^1(\mathbb{R};\mathbb{R})$ whose support is included in (x_0, ∞) .

Assumption (A)'

We assume that the diffusion coefficient of (1) is of the form $\sigma(t, x) = \sigma_1(t)\sigma_2(x)$ and the following assumption.

(A1)' For $t \in [0, \infty)$, $b(t, \cdot) \in C_b^2(\mathbb{R}; \mathbb{R})$. Furthermore, all constants which bound the derivatives of $b(t, \cdot)$ do not depend on t.

(A2)' $\sigma_1(\cdot) \in C_b^0([0,\infty);\mathbb{R})$ and there exists $c_1 > 0$ such that $|\sigma_1(t)| \ge c_1$ for any $t \in [0,\infty)$.

(A3)' $\sigma_2(\cdot) \in C_b^3(\mathbb{R}; \mathbb{R}_+)$ (respectively, $C_b^3(\mathbb{R}; \mathbb{R}_-)$), $x \mapsto \sigma_2(x)$ is increasing (respectively, decreasing) and there exists $c_2 > 0$ such that $|\sigma_2(x)| \ge c_2$ for any $x \in \mathbb{R}$.

Theorem 2. Assume (A)'. Let $G \in \mathbb{D}^{1,\infty}$ and $a_0 > x_0$ be fixed arbitrarily. Then there exists a random variable $H_T(G, a_0)$ such that $H_T(G, a_0)$ belongs to $L^p(\Omega, \mathcal{F}, P)$ for any $p \ge 1$, and

$$E^P\left[\varphi'(M_T)G\right] = E^P\left[\varphi(M_T)H_T(G, a_0)\right]$$

holds for any $\varphi \in C_b^1(\mathbb{R};\mathbb{R})$ whose support is included in (a_0,∞) .

Define

$$a(x) := VV^T(x),$$

for $x \in \mathbb{R}^d$, where V^T is the transpose matrix for V. Assumption (B)

- **(B1)** For each $1 \leq i, j \leq d, V_j^i(\cdot) \in C_b^2(\mathbb{R}^d; \mathbb{R}).$
- (B2) There exists c > 0 such that

$$\langle \xi, a(x)\xi \rangle \ge c|\xi|^2,$$

holds for any $x, \xi \in \mathbb{R}^d$.

(B3) Vector fields V_1, \dots, V_d are commutative, that is

$$[V_i, V_j](x) = [V_j, V_i](x), 1 \le i, j \le d$$

hold for any $x \in \mathbb{R}^d$, where we have defined the Lie bracket by $[V_i, V_j](x) := \nabla V_j V_i(x) - \nabla V_i V_j(x)$.

(B4) For each $1 \le i, j \le d, (V^{-1})_{i}^{i}(\cdot) \in C_{b}^{1}(\mathbb{R}^{d}; \mathbb{R}).$

(B5) For each $1 \leq i \leq d$, $V_0^i(\cdot) \in C_b^1(\mathbb{R}^d; \mathbb{R})$.

Theorem 3. Assume (B). Then there exists a random variable \hat{H}_T such that \hat{H}_T belongs to $L^p(\Omega', \mathcal{F}', P')$ for any $p \geq 1$, and

$$E^{P'}[\varphi'(\hat{M}_T)] = E^{P'}[\varphi(\hat{M}_T)\hat{H}_T]$$

holds for any $\varphi \in C_b^1(\mathbb{R};\mathbb{R})$.

References

- Gobet, E., Kohatsu-Higa, A.: Computation of greeks for barrier and look-back options using Malliavin calculus. Electron. Commun. Probab. 8, 51-62 (2003).
- [2] Hayashi, M., Kohatsu-Higa, A.: Smoothness of the distribution of the supremum of a multi-dimensional diffusion process. Potential Anal. 38 (1), 57-77 (2013).
- [3] Nakatsu, T.: Integration by parts formulas concerning maxima of some SDEs with applications to the study of density functions. Preprint.
- [4] Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications (New York), Springer-Verlag, Berlin (2006).