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Intorduction

In this talk, we will consider a stochastic heat equation:

tht(;E) - %AXt(x) b o(Xy (@)W (L z), o(0)=0,
1%i_r}]r(l) Xi(z)dz = Xo(dz) (1)

where W is a time-space white noise.
We construct a solution from a branching system in random
environment for the case o(u) = vVu + 2u?.
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History

e Existence of solutions

@ o(u) is Lipschitz and X, has a “continuous density”. = Existence
and uniqueness of strong solution. (Cabana 70, Walsh ’70s, Funaki
’83, Iwata "87)

@ o(u) = \/yu and Xj is finite measure = Existence and uniqueness
of nonnegative weak solutions via “super-Brownian motion”
(Konno-Shiga 88, Reimers ’89).

@ |o(u)| < C(1+ |u|]) and X has a “continuous density” = Existence
of weak solutions (Shiga ’94).
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History (cont’d)

e Uniqueness of solutions
@ o(u) =u” (3 <7 < 1) = Uniqueness of nonnegative weak solution
(Mytnik ’99).
@ o2(u) is analytic and X is bounded = Uniqueness of weak solution
(Athreya-Tribe ’00).
@ o(u) = |[u]” (3 <y < 1) = Pathwise uniqueness (Mytnik-Perkins
'11).
@ o(u) = |u]” (3 <y < 2) = Pathwise nonuniqueness
(Mueller-Mytnik-Perkins’14).
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Super-Brownian motion

The stochastic heat equations (1) appear as the scaling limit process of
some models.
For example,

e Cole-Hopf solution to KPZ=- o(u) = u. (Bertini-Giacomin '97)

o Stepping-Stone model = o(u) = v/u — u2. (Shiga ’88)

e Super-Brownian motion = o(u) = \/7u.

e Long-range contact process (or voter model) = o(u) = \/u and
drift term ((cu — u?)dt). (Mueller-Tribe '95)
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Super-Brownian motion

The stochastic heat equations (1) appear as the scaling limit process of
some models.
For example,

e Cole-Hopf solution to KPZ=- o(u) = u. (Bertini-Giacomin '97)

o Stepping-Stone model = o(u) = v/u — u2. (Shiga ’88)

e Super-Brownian motion = o(u) = \/7u.

e Long-range contact process (or voter model) = o(u) = \/u and

drift term ((cu — u?)dt). (Mueller-Tribe '95)

We focus on super-Brownian motion which appears as a scaling limit of
critical branching random walks.
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Branching diffusion

We start a simple model “Galton-Watson process” before considering
super-Brownian motion.

Galton-Watson process

Let £ > 0 and N € N. We call the following particle systems
Galton-Watson process:

@ There exist |z |-partcles at time 0.

@ Each particle independently reproduces two particles with
probability p or vanishes with probability 1 — p for each time,

where 0 < p < 1.

Remark: We consider binary type for simplicity.
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Example of Galton-Watson process

x:l,N:4andp:%.

O
@)
O
O
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Branching diffusion

We say that Galton-Watson process is critical (supercritical,
subcritical) when p =1 (p > %, p < 1).

Let BSLN) be the number of particles at time n. Then, we have the
following theorem:

Theorem A (Feller '39, '51)

Let XM = LB and p=p™) = L + % (r €R). Then,
x™ 23 x| in D([0, 00), 00).
In particular, X is the strong unique solution of SDE:
dX; = rXudt + /XedBy, Xo =z,

where B; is a one-dimensional Brownian motion.

o

Remark: The strong uniqueness holds by Yamada-Watanabe theorem.
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Super-Brownian motion

Next, we consider branching process with spatial motion on Z¢.

Branching random walks

@ There exists particles at x1, - ,zpy € Z4 at time 0.

@ Each particle independently chooses nearest neighbor site with
probability Q—Id and moves there.

@ Then, it is independently replaced by two particles with
probability % or erased with probability %
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Example of branching random walks

d=1, My =1, 21 =0.
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Super-Brownian motion

We define branching random walks as M r(R%)-valued process as
follows:

1
Xt(N) (A) = Nlj{Particles in VNA at time |tN]},

where Mp(R?) is the set of finite measure with the topology of weak
convergence and A € B(R?).
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Super-Brownian motion

Theorem B (Watanabe '68, Dawson '75)

Suppose XéN) = Xy in Mp(R?%). Then, we have that
x™ 23 X in D([0, 00), Mp(RY).
In particular, X is the unique solution to the martingale problem:

For any ¢ € Cg(Rd)
t
Zu(¢) = Xu($) — Xo(d) - /O X, (Qldm) s

is an L2-continuous J7*-martingale and

(Z(®) = / X, (¢?)ds.

We call measure-valued process X a super-Brownian motion.
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Super-Brownian motion

Super-Brownian motion is characterized by the solution of PDE:

Characterization via nonlinear-PDE
For ¢ € C§’+(Rd), we define

Elexp(—X(¢))] = exp(—Xo(ut)).
Then, u is the unique solution to

0 1 1
8—1: = ﬁAu(ac) - §u2, u(0,z) = ¢(x).

We remark that we can construct other super-Brownian motion
characterized by

0 1
G = 3dule) +Bu—aw’, u(0,2) = §(x), u(0.2) = (x)
(p € (1,2]) by changing the branching systems and scaling.
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Super-Brownian motion

Now, we give an important properties of SBM.

@ (Konno-Shiga ’88, Reimers ’89) When d = 1 X; is absolutely
continuous with respect to Lebesgue measure for any ¢ > 0 a.s.

and its density X;(x) is the unique nonnegative solution to

0 1 .
aXt(a:) = §AXt($) + VX ()W (t, x), %in(l) X¢(z)dx = Xo(dz).
_>
@ (Dawson-Perkins ’91, LeGall-Perkins '95) When d > 2, X, is
singular with respect to Lebesgue measure a.s.if X; > 0. Also, the
Hausdorff dimension of support is “2”.
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Branching random walks in random environment

Now, we try to extend branching random walks to the model in random
environment and consider the scaling limit like super-Brownian motion.

Branching random walks in random environment

@ There exist particles at x1,--- ,zp, € 2Z.

@ Each particle located at z at time n independently chooses nearest
neighbor site with probability % and moves there.

@ Then, it is independently replaced by two particles with
probability 3+ 55\71 /i or erased with probability with % — gg\?ﬁi,
where {£(n, %))} (nc)enxz are i.i.d. random variables taking value

{—1,1} uniformly.
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Main result

Theorem (N '144)

Suppose XéN) = Xg. Then, x™ 5 x. Moreover, X is absolutely
continuous with respect to Lebesgue measure for any ¢ > 0 a.s. and the
unique nonnegative solution to the martingale problem:

(For any ¢ € C%(R),
t
216) = Xi(¢) ~ Xolo) = [ X, (;m) os

is a continuous and L2-integrable F;*-martingale such that

(@) = [ Xi(¢)ds
' 2 2( ) dds
+2 /0 i XZ () (v)dzds,

where X;(dx) = X;(z)dz.
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Main result

X is the weak unique nonnegative solution to stochastic heat equation:

0 .
aXt( ) AXt + \/Xt + 2Xt($)2W(t, LIZ‘)

lim Xt(m)d:v = Xo(dz).
t—0
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Main result

X is the weak unique nonnegative solution to stochastic heat equation:

;Xt(x) _ %AXt(x) +V/Xi(@) + 2K, @)W (¢, ).

lim Xy (z)dz = Xo(dz).
t—0

Thus, we have extended existence and uniqueness of nonnegative
solution to finite measure initial condition for the case

o(u) = vVu+ 2u?.
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What is N—1/4?

Intuitive reason
The summation of fluctuation of mean offsprings from 1 over
[aN'/2 bN1/?] is

Z g(n’ l‘)
N1/4
z€[aN1/2 pN1/2]

and central limit theorem implies that it converges to normal random
variable N (0, (b —a)).
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Uniqueness

Weak uniqueness of X follows from the existence of the process Y.
independent of X such that for any ¢ € C’g T(R)

Exlexp(=X1(¢))] = Ey[exp(=Xo(¥1))].

Indeed, if X and X’ are nonnegative solutions, then we have that for
any ¢ € C§’+(R),

Exlexp(=X(¢))] = By [exp(—Xo(¥3))] = Ex[exp(—X{(¢))]-
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Uniqueness

Such Y. is a solution to a stochastic heat equation:

0 1 1 i
5 Yi(@) = SAYi (@) = YA (@) + VRYi(2)W (¢, 2),

Yo(z) = ¢(x),

where W is time-space white noise independent, of W (the existence of
solutions follows from Dawson-Girsanov transformation).
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Higher dimension?

We have a question.

Can we prove the existence of the non-trivial scaling limit of Xt(N) for J
d> 27
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Higher dimension?

We have a question.

Can we prove the existence of the non-trivial scaling limit of Xt(N) for J
d> 27

The answer is “no”.
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General o(u)

Can we construct solutions to stochastic heat equation with finite
measure initial condition for o other than o = vu + 2u?2?

One of idea is a change of environment for SBMRE as follows:
@ There exist particles at x1, -,z € 2Z.

@ Each particle located at z at time n independently chooses nearest
neighbor site with probability % and moves there.

@ Then, it is independently replaced by two particles with

probability % + gg&ﬁ g (ﬁ?ﬁ) or erased with probability with
) Bn,a ..
- g%ﬁg <N1/2 , where {£(n, %))} (n.2)enxz are i.i.d. random

variables taking value {—1, 1} uniformly,

where g(u) = #1{11 > 0}.

Then, “the scaling limit” will be a solution to SHE with
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Thank you for your attentions!

M Nakashima (Uni. Tsukuba) SHE from BSRE September 24th in



	Introduction
	Introduction

	Branching process
	branching process
	Super-Brownian motion

	SBMRE
	branching random walks in random environment
	Main result


