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Introduction Branching process SBMRE

Intorduction

In this talk, we will consider a stochastic heat equation:

∂

∂t
Xt(x) =

1

2
∆Xt(x) + σ(Xt(x))Ẇ (t, x), σ(0) = 0,

lim
t→0

Xt(x)dx = X0(dx) (1)

where W is a time-space white noise.
We construct a solution from a branching system in random
environment for the case σ(u) =

√
u+ 2u2.
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History

Existence of solutions
1 σ(u) is Lipschitz and X0 has a “continuous density”. ⇒ Existence

and uniqueness of strong solution. (Cabana ’70, Walsh ’70s, Funaki
’83, Iwata ’87)

2 σ(u) =
√
γu and X0 is finite measure ⇒ Existence and uniqueness

of nonnegative weak solutions via “super-Brownian motion”
(Konno-Shiga ’88, Reimers ’89).

3 |σ(u)| ≤ C(1 + |u|) and X0 has a “continuous density” ⇒ Existence
of weak solutions (Shiga ’94).
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History (cont’d)

Uniqueness of solutions
1 σ(u) = uγ ( 12 < γ < 1) ⇒ Uniqueness of nonnegative weak solution

(Mytnik ’99).
2 σ2(u) is analytic and X is bounded ⇒ Uniqueness of weak solution

(Athreya-Tribe ’00).
3 σ(u) = |u|γ ( 34 < γ < 1) ⇒ Pathwise uniqueness (Mytnik-Perkins

’11).
4 σ(u) = |u|γ ( 12 ≤ γ < 3

4 ) ⇒ Pathwise nonuniqueness
(Mueller-Mytnik-Perkins’14).
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Super-Brownian motion

The stochastic heat equations (1) appear as the scaling limit process of
some models.
For example,

Cole-Hopf solution to KPZ⇒ σ(u) = u. (Bertini-Giacomin ’97)

Stepping-Stone model ⇒ σ(u) =
√
u− u2. (Shiga ’88)

Super-Brownian motion ⇒ σ(u) =
√
γu.

Long-range contact process (or voter model) ⇒ σ(u) =
√
u and

drift term ((cu− u2)dt). (Mueller-Tribe ’95)

We focus on super-Brownian motion which appears as a scaling limit of
critical branching random walks.
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Branching diffusion

We start a simple model “Galton-Watson process” before considering
super-Brownian motion.

Galton-Watson process

Let x ≥ 0 and N ∈ N. We call the following particle systems
Galton-Watson process:

1 There exist ⌊xN⌋-partcles at time 0.

2 Each particle independently reproduces two particles with
probability p or vanishes with probability 1− p for each time,

where 0 < p < 1.

Remark: We consider binary type for simplicity.
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Example of Galton-Watson process

x = 1, N = 4 and p = 1
2 .
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Branching diffusion

We say that Galton-Watson process is critical (supercritical,
subcritical) when p = 1

2 (p > 1
2 , p < 1

2).

Let B
(N)
n be the number of particles at time n. Then, we have the

following theorem:

Theorem A (Feller ’39, ’51)

Let X
(N)
t = 1

NB
(N)
⌊tN⌋ and p = p(N) = 1

2 + r
2N (r ∈ R). Then,

X
(N)
· ⇒∃ X·, in D([0,∞),∞).

In particular, X is the strong unique solution of SDE:

dXt = rXtdt+
√

XtdBt, X0 = x,

where Bt is a one-dimensional Brownian motion.

Remark: The strong uniqueness holds by Yamada-Watanabe theorem.
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Super-Brownian motion

Next, we consider branching process with spatial motion on Zd.

Branching random walks

1 There exists particles at x1, · · · , xMN
∈ Zd at time 0.

2 Each particle independently chooses nearest neighbor site with
probability 1

2d and moves there.

3 Then, it is independently replaced by two particles with
probability 1

2 or erased with probability 1
2 .
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Example of branching random walks

d = 1, MN = 1, x1 = 0.

Z
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Super-Brownian motion

We define branching random walks as MF (Rd)-valued process as
follows:

X
(N)
0 (dx) =

1

N

MN∑
i=1

δxi/N1/2(dx)

X
(N)
t (A) =

1

N
♯{Particles in

√
NA at time ⌊tN⌋},

where MF (Rd) is the set of finite measure with the topology of weak
convergence and A ∈ B(Rd).
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Super-Brownian motion

Theorem B (Watanabe ’68, Dawson ’75)

Suppose X
(N)
0 ⇒ X0 in MF (Rd). Then, we have that

X
(N)
· ⇒∃ X·, in D([0,∞),MF (Rd)).

In particular, X is the unique solution to the martingale problem:

For any ϕ ∈ C2
b (Rd)

Zt(ϕ) = Xt(ϕ)−X0(ϕ)−
∫ t

0
Xs

(
1

2d
∆ϕ

)
ds

is an L2-continuous FX
t -martingale and

⟨Z(ϕ)⟩t =
∫ t

0
Xs(ϕ

2)ds.

We call measure-valued process X a super-Brownian motion.
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Super-Brownian motion

Super-Brownian motion is characterized by the solution of PDE:

Characterization via nonlinear-PDE

For ϕ ∈ C2,+
b (Rd), we define

E[exp(−Xt(ϕ))] = exp(−X0(ut)).

Then, u is the unique solution to

∂u

∂t
=

1

2d
∆u(x)− 1

2
u2, u(0, x) = ϕ(x).

We remark that we can construct other super-Brownian motion
characterized by

∂u

∂t
=

1

2
∆u(x) + βu− αup, u(0, x) = ϕ(x), u(0, x) = ϕ(x),

(p ∈ (1, 2]) by changing the branching systems and scaling.
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Super-Brownian motion

Now, we give an important properties of SBM.

Theorem C
1 (Konno-Shiga ’88, Reimers ’89) When d = 1 Xt is absolutely

continuous with respect to Lebesgue measure for any t > 0 a.s.
and its density Xt(x) is the unique nonnegative solution to

∂

∂t
Xt(x) =

1

2
∆Xt(x) +

√
Xt(x)Ẇ (t, x), lim

t→0
Xt(x)dx = X0(dx).

2 (Dawson-Perkins ’91, LeGall-Perkins ’95) When d ≥ 2, Xt is
singular with respect to Lebesgue measure a.s. if Xt > 0. Also, the
Hausdorff dimension of support is “2”.
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Branching random walks in random environment

Now, we try to extend branching random walks to the model in random
environment and consider the scaling limit like super-Brownian motion.

Branching random walks in random environment
1 There exist particles at x1, · · · , xMN

∈ 2Z.
2 Each particle located at x at time n independently chooses nearest

neighbor site with probability 1
2 and moves there.

3 Then, it is independently replaced by two particles with
probability 1

2 + ξ(n,x)

2N1/4 or erased with probability with 1
2 − ξ(n,x)

2N1/4 ,
where {ξ(n, x))}(n,x)∈N×Z are i.i.d. random variables taking value
{−1, 1} uniformly.
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Example of BRWRE

ξ = −1, ξ = 1, N = 1

Z
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Main result

Theorem (N ’14+)

Suppose X
(N)
0 ⇒ X0. Then, X

(N)
· ⇒ X·. Moreover, X is absolutely

continuous with respect to Lebesgue measure for any t > 0 a.s. and the
unique nonnegative solution to the martingale problem:

For any ϕ ∈ C2
b (R),

Zt(ϕ) = Xt(ϕ)−X0(ϕ)−
∫ t

0
Xs

(
1

2
∆ϕ

)
ds

is a continuous and L2-integrable FX
t -martingale such that

⟨Z(ϕ)⟩t =
∫ t

0
Xs(ϕ

2)ds

+2

∫ t

0

∫
Rd

X2
s (x)ϕ

2(x)dxds,

where Xt(dx) = Xt(x)dx.
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Main result

Corollary

X is the weak unique nonnegative solution to stochastic heat equation:

∂

∂t
Xt(x) =

1

2
∆Xt(x) +

√
Xt(x) + 2Xt(x)2Ẇ (t, x).

lim
t→0

Xt(x)dx = X0(dx).

Thus, we have extended existence and uniqueness of nonnegative
solution to finite measure initial condition for the case
σ(u) =

√
u+ 2u2.
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What is N−1/4?

Intuitive reason

The summation of fluctuation of mean offsprings from 1 over
[aN1/2, bN1/2] is ∑

x∈[aN1/2,bN1/2]

ξ(n, x)

N1/4

and central limit theorem implies that it converges to normal random
variable N(0, (b− a)).
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Uniqueness

Weak uniqueness of X follows from the existence of the process Y·
independent of X such that for any ϕ ∈ C2,+

b (R)

EX [exp(−Xt(ϕ))] = EY [exp(−X0(Yt))].

Indeed, if X and X ′ are nonnegative solutions, then we have that for
any ϕ ∈ C2,+

b (R),

EX [exp(−Xt(ϕ))] = EY [exp(−X0(Yt))] = EX′ [exp(−X ′
t(ϕ))].
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Uniqueness

Such Y· is a solution to a stochastic heat equation:

∂

∂t
Yt(x) =

1

2
∆Yt(x)−

1

2
Y 2
t (x) +

√
2Yt(x)

˙̃W (t, x),

Y0(x) = ϕ(x),

where W̃ is time-space white noise independent of W (the existence of
solutions follows from Dawson-Girsanov transformation).
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Higher dimension?

We have a question.

Can we prove the existence of the non-trivial scaling limit of X
(N)
t for

d ≥ 2?

The answer is “no”.
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General σ(u)

Can we construct solutions to stochastic heat equation with finite
measure initial condition for σ other than σ =

√
u+ 2u2?

One of idea is a change of environment for SBMRE as follows:

1 There exist particles at x1, · · · , xMN
∈ 2Z.

2 Each particle located at x at time n independently chooses nearest
neighbor site with probability 1

2 and moves there.

3 Then, it is independently replaced by two particles with

probability 1
2 + ξ(n,x)

2N1/4 g
(

Bn,x

N1/2

)
or erased with probability with

1
2 − ξ(n,x)

2N1/4 g
(

Bn,x

N1/2

)
, where {ξ(n, x))}(n,x)∈N×Z are i.i.d. random

variables taking value {−1, 1} uniformly,

where g(u) = σ̃(u)
u 1{u > 0}.

Then, “the scaling limit” will be a solution to SHE with
σ(u) =

√
u+ |σ̃(u)|2.
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Thank you for your attentions!
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