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In this talk, we will consider the stochastic heat equations on the line which have been studied for four
decades. Especially, we will construct a non-negative solution to a certain stochastic heat equation by using
a branching systems in random environment.

1 Stochastic heat equation

In this talk, we consider the stochastic heat equations as follows:

∂

∂t
Xt =

1

2
∆Xt(x) + a(Xt(x))Ẇ (t, x), (1.1)

where W is a time-space white noise and a is a continuous function with a(0) = 0.
The study of stochastic heat equation was started around 1970’s. In particular, the existence and the

uniqueness of the strong solution to (1.1) are known if a is Lipschitz continuous [8] et.al.
Also, the existence of the solution to (1.1) are verified for more general a under some initial conditions

[7]. On the other hand, the uniqueness of solutions to (1.1) are very difficult problem attacked by many
mathematicians [4, 3] et. al.

The stochastic heat equations (1.1) appear as some limit process. One of the most famous examples is a
one-dimensional super-Brownian motion which is a measure-valued process arising as a scaling limit of some
critical branching Brownian motion or branching random walks.

2 Super-Brownian motion

Before giving a definition of super-Brownian motion, we recall the branching random walks.∗

Definition 1. Branching random walks are defined as follows:

(1) There are particles at x1, · · · , xMN ∈ Zd at time 0.

(2) The particles at time n choose a nearest neighbor site independently and uniformly, and move there.

(3) Then, each of them independently splits into two particles with probability 1
2 or vanishes with probability

1
2 .

Remark: The total number at time n, Bn, is a critical Galton-Watson process.

We set a measure-valued process {X(N)
t } as follows: For every Borel set A

X
(N)
0 (dx) =

1

N

MN∑
i=1

δxi/N1/2(dx),

X
(N)
t (A) =

1

N
♯{particles locates in N1/2A at time ⌊Nt⌋}.

Then, we have the following theorem:
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Theorem 2. ([9, 1]) If X
(N)
0 ⇒ X0 in MF (Rd), then {X(N)

· } weakly converges to a measure valued process
Xt as N → ∞.

Moreover,[2, 6] if d = 1, then Xt is absolutely continuous with respect to the Lebesgue measure for any
t > a.s. and its density Xt(x) is the unique non-negative weak solution to the stochastic heat equation

∂

∂t
Xt(x) =

1

2
∆Xt(x) +

√
Xt(x)Ẇ (t, x), lim

t→0
Xt(x)dx = X0(dx).

3 Main result

We construct a solution to (1.1) with a(u) =
√
u from a certain branching system in random environment.

Theorem 3. ([5]) For any X0 ∈ MF (R), there exists the unique, weak, and non-negative solution to the
stochastic heat equation

∂

∂t
Xt(x) =

1

2
∆Xt(x) +

√
Xt(x) +Xt(x)2Ẇ (t, x), lim

t→∞
Xt(x)dx = X0(dx).

Remark: Mytnik gave a remark on the above construction in his paper.
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