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Kotani (Tohoku Univ.).

A locally finite, connected oriented graph X = (V,E) is called crystal lattice if X is an

abelian covering graph of a finite graph X0 = (V0, E0). We denote by Γ ' Zd the covering

transformation group. Our interest is the long time behavior of the transition probability

p(n, x, y) =
∑

(e1,e2,...,en)∈Cx,n
t(en)=y

p(e1)p(e2) · · · p(en)

given by a 1-step transition probability p : E → [0, 1] satisfying
∑
e∈Ex

p(e) = 1, p(e) + p(e) > 0, ∀σ ∈ Γ, p(σe) = p(e).

There are many results of this problem under some various settings. See Spitzer [10],

Lawler [9] and references therein. Our study is motivated by the following local central

limit theorem (LCLT) presented by Sunada [11]:

Theorem 0.1 Suppose that the random walk is irreducible with period K. Then

p(n, x, y) ∼ Kvol(AlbΓ)m(y)

(2πn)d/2
exp

(
−‖Φ(y)− Φ(x)− nρR(γp)‖2

2n

)
,

where m is the (lift of) normalized invariant measure on X0, γp is the homological direc-

tion, ρR is the canonical surjective homomorphism from H1(X0,R) to Γ⊗R, Φ : X → Γ⊗R
is the modified harmonic realization, defined by

∀x ∈ V, ∆Φ(x) :=
∑
e∈Ex

p(e) (Φ(o(x))− Φ(t(e))) = ρR(γp),

and ‖ · ‖ is the Albanese metric on Γ⊗ R, induced by

Γ⊗ R ←−←− H1(X0,R)

l l
Hom(Γ,R) ↪→ H1(X0,R) ' H1(X0).
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Here H1(X0) is the space of modified harmonic 1-forms difined by

∀x ∈ V0, δω(x) + 〈γp, ω〉 = 0

equipped with a canonical inner product defined by

〈〈ω1, ω2〉〉 =
∑
e∈E0

p(e)ω1(e)ω2(e)m(o(e))− 〈γp, ω1〉〈γp, ω2〉.

See also .[2], [3], [4], [5], [6], [7], [8], [12].

It is natural to ask the weak convergence of the sequence of law of the probability

measure of the random walk on X. In this talk we give two canonical weak convergences.
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