A central limit theorem for non-symmetric random walks on crystal lattices

Satoshi Ishiwata (Yamagata University) *

This talk is based on a joint work with Hiroshi Kawabi(Okayama Univ.) and Motoko Kotani (Tohoku Univ.).

A locally finite, connected oriented graph X = (V, E) is called *crystal lattice* if X is an abelian covering graph of a finite graph $X_0 = (V_0, E_0)$. We denote by $\Gamma \simeq \mathbb{Z}^d$ the covering transformation group. Our interest is the long time behavior of the transition probability

$$p(n, x, y) = \sum_{\substack{(e_1, e_2, \dots, e_n) \in C_{x,n} \\ t(e_n) = y}} p(e_1) p(e_2) \cdots p(e_n)$$

given by a 1-step transition probability $p: E \to [0, 1]$ satisfying

$$\sum_{e \in E_x} p(e) = 1, \quad p(e) + p(\overline{e}) > 0, \quad \forall \sigma \in \Gamma, \, p(\sigma e) = p(e).$$

There are many results of this problem under some various settings. See Spitzer [10], Lawler [9] and references therein. Our study is motivated by the following local central limit theorem (LCLT) presented by Sunada [11]:

Theorem 0.1 Suppose that the random walk is irreducible with period K. Then

$$p(n,x,y) \sim \frac{K \operatorname{vol}(\operatorname{Alb}^{\Gamma}) m(y)}{(2\pi n)^{d/2}} \exp\left(-\frac{\|\Phi(y) - \Phi(x) - n\rho_{\mathbb{R}}(\gamma_p)\|^2}{2n}\right),$$

where m is the (lift of) normalized invariant measure on X_0 , γ_p is the homological direction, $\rho_{\mathbb{R}}$ is the canonical surjective homomorphism from $H_1(X_0, \mathbb{R})$ to $\Gamma \otimes \mathbb{R}$, $\Phi : X \to \Gamma \otimes \mathbb{R}$ is the modified harmonic realization, defined by

$$\forall x \in V, \quad \Delta \Phi(x) := \sum_{e \in E_x} p(e) \left(\Phi(o(x)) - \Phi(t(e)) \right) = \rho_{\mathbb{R}}(\gamma_p),$$

and $\|\cdot\|$ is the Albanese metric on $\Gamma \otimes \mathbb{R}$, induced by

$\Gamma\otimes\mathbb{R}$	$\leftarrow \leftarrow \leftarrow$	$\mathrm{H}_1(X_0,\mathbb{R})$
\uparrow		\uparrow
$\operatorname{Hom}(\Gamma,\mathbb{R})$	\hookrightarrow	$\mathrm{H}^1(X_0, \mathrm{R}) \simeq \mathcal{H}^1(X_0).$

*Partially supported by Grant-in-Aid for Young Scientists (B)(No. 21740034), JSPS

Here $\mathcal{H}^1(X_0)$ is the space of modified harmonic 1-forms difined by

$$\forall x \in V_0, \quad \delta\omega(x) + \langle \gamma_p, \omega \rangle = 0$$

equipped with a canonical inner product defined by

$$\langle\!\langle \omega_1, \omega_2 \rangle\!\rangle = \sum_{e \in E_0} p(e)\omega_1(e)\omega_2(e)m(o(e)) - \langle \gamma_p, \omega_1 \rangle \langle \gamma_p, \omega_2 \rangle.$$

See also .[2], [3], [4], [5], [6], [7], [8], [12].

It is natural to ask the weak convergence of the sequence of law of the probability measure of the random walk on X. In this talk we give two canonical weak convergences.

References

- [1] R. Durrett: Stochastic calculus. A partial introduction. CRC Press, 1996.
- [2] T. Kazami and K. Uchiyama, Random walks on periodic graphs, Trans. AMS, vol. 360 (2008), no. 11, pp. 6065–6087,
- [3] M. Kotani: A central limit theorem for magnetic transition operators on a crystal lattice, J. London Math. Soc. 65 (2002), pp. 464–482.
- [4] M. Kotani: An asymptotic of the large deviation for random walks on a crystal lattice, Contemp. Math. 347(2004), pp. 141–152.
- [5] M. Kotani and T. Sunada: Albanese maps and off diagonal long time asymptotics for the heat kernel, Comm. Math. Phys. 209 (2000), pp. 633–670.
- [6] M. Kotani and T. Sunada: Standard realizations of crystal lattices via harmonic maps, Trans. Amer. Math. Soc. 353 (2000), pp. 1–20.
- [7] M. Kotani and T. Sunada: Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z. 254 (2006), pp. 837–870.
- [8] M. Kotani, T. Shirai and T. Sunada: Asymptotic behavior of the transition probability of a random walk on an infinite graph, J. Funct. Anal. **159** (1998), pp. 664–689.
- [9] G. Lawler and V. Limic: Random Walk: A Mdern Introduction, Cambridge Studies in Advanced Math. vol 123, 2010.
- [10] F. Spitzer, Principles of Random Walks, Graduate Texts in Math., vol. 34, (1964).
- [11] T. Sunada: Discrete Geometric Analysis, Lecture Note at Isaac Newton Institute for Mathematical Sciences, 2007.
- [12] T. Sunada: Topological Crystallography with a View Towards Discrete Geometric Analysis, Survers and Tutorials in the Applied Mathematical Sciences 6, Springer Japan, 2013.