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1 \\\Outline of the talk

Vi: vector fields on Rn (0 ≤ i ≤ d).
Consider the following RDE driven by a geom. RP x;

dyt =
d∑

i=1

Vi(yt)dxi
t + V0(yt)dt

with y0 = a ∈ Rn.

Here, x is a geom. RP with roughness p ∈ (2, 3).
GΩp(Rd) stands for geom. RP space.

(deterministic)
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(wt)0≤t≤1: d-dim frac BM (
1

3
< H ≤

1

2
)

w: canonical lift. (Coutin-Qian ’02)

GΩp(Rd)-val. r.v. for p ∈ (1/H, 3).

♠ Set x = w in the above RDE. Then, we have

something like SDE driven by fBM.

♠ If Vi’s satisfy (hypo)ellipticity condition at a,

then the law of yt has a density pt(a, a′) w.r.t.

Lebesgue measure da′ on Rn.
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Aim of the talk: Prove (off-diagonal) short time

asymptotic expansion of pt(a, a′) under

ellipticity at a + mild assumptions.

Method: T. Lyons’ rough path theory

+ S. Watanabe’s distributional Malliavin calculus in

(Watanabe ’87)

♣ Watanabe’s asymptotic theory seems quite

powerful even in rough path setting.

♣ When H = 1/2, fBM =BM and RDE= SDE of

Stratonovich type. Our result recovers most of

(Watanabe ’87).
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Secondary aims of the talk:

• Looking at Watanabe’s theory, in particular, his

calculations of SDEs, from a viewpoint of RP theory.

• Advertising the power of RP theory, by reproving

and extending one of the strongest results in the

usual SDE theory.
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♣ When H = 1/2, there are so many preceding

results.

Analytic proofs (Note that pt(a, a′) is heat kernel

of heat semigroup.) We do not mention this.

Probabilistic proofs via Feynman-Kac formula

In most of them, asymptotics of Laplace-type

integrals was computed.
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Some famous probabilistic results are;

(0) Molchanov ’75 Pinned diffusion process

(1) Bismut Mallaivin calc. of Bismut-type.

(green lecture note ’84)

(2) Ben Arous, Léandre, etc...(late 80’s-early 90’s)

Laplace’s method (without Mallaivin calc.)

(3) Watanabe ’87 (& ’93 with Takanobu)

distributional Mallaivin calc. of Watanabe-type.

(4) Kusuoka-Stroock ’91, ’94

generalized Mallaivin calc. of KS-type.
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Three classes of Gaussian RP. (A)⊃(B)⊃(C)

w = (w1, . . . , wd); conti. Gaussian proc,

mean 0, iid-components, w0 = 0.

R(s, t) := E[w1
sw1

t ]; covariance

H; Cameron-Martin space

(A): If R is of finite 2D ρ-variation (∃ρ ∈ [1, 2)),
then w admits a canonical RP lift with p ∈ [2ρ, 4).
(Friz-Victoir ’10. 2nd/3rd level RP theory.)

(C): fBM with H ∈ (1/4, 1/2].
Essential barrier at 1/4. Small barrier at 1/3.

(Coutin-Qian ’02. A prominent example.)
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(B) Complementary Young condition:

Gauss proc w in class (A) which satisfies the

following;

∃p ∈ [2ρ, 4) and ∃q ∈ [1, 2) s.t.

(i) H ⊂ Cq−var([0, 1], Rd)
(ii) 1/p + 1/q > 1 (Condition for Young integral)

♣ This says the two translations (in abstract Wiener

space and in geom. RP space) are compatible

through RP lifting procedure.

♣ (B)⊃(C) by Friz-Victior ’06.
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2 Malliavin calculus for RDE

♠ Cass-Friz-(Victoir) ’09, ’10

A class of Gaussian RP 3 fBM H ∈ (1/3, 1/2].

• Differentiability in a weak sense i.e., yt ∈ Dloc
p,1

• Malliavin non-degeneracy under Hörmander

condition in a weak sense, i.e.,

∃(Malliavin cov. matrix)−1 a.s.

=⇒ ∃density of yt

But, regularity of the density ??.
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♠ Hairer-Pillai ’11

fBM H ∈ (1/3, 1/2]

• Differentiability i.e., yt ∈ D∞

• Malliavin non-degeneracy under Hörmander

condition, i.e.,

(Malliavin cov. matrix)−1 ∈ ∩1<q<∞Lq

=⇒ the density pt(a, a′) of yt is smooth in a′
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Some recent developments

♠ Cass-Hairer-Litterer-Tindel (’12+)

Malliavin non-degeneracy under Hörmander

condition for more general Gauss. RPs.

♠ I. (’14)

Differetiability under ”complementary Young

regularity” condition on Gauss RP

These two results probably enable us to carry out

Malliavin calculus on RP space rather smoothly.

(Lots of papers will probably be produced)
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For fBM with H ∈ (1/4, 1/2], there already are:

♠ Baudoin-Ouyang-Zhang ’13+

Varadhan’s estimate i.e., short time asymptotics of

log pt(a, a′)
♠ Baudoin-Ouyang-Zhang ’13+

Smoothing effect of ”heat semigroup” under

Kusuoka father’s UFG condition.

♠ Baudoin-E. Nualart-Ouyang-Tindel ’14+

Positivity of the density pt(a, a′).
♠ I. ’14. (This work. H > 1/3)

short time off-diagonal asymptotics of pt(a, a′)
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3 Index sets

Index sets for the asymptotics are quite complicated.

Set

Λ1= {n1 +
n2

H
| n1, n2 ∈ N},

= {0, 1, 2,
1

H
, 3, 1 +

1

H
, 4, . . .}



14/36

No wonder why Λ1 appears, because we consider

the scaled RDE as always: For 0 < ε ≤ 1,

dyε
t =

d∑
i=1

Vi(yε
t )εdwi

t + V0(yε
t )ε

1/Hdt

The laws of (yε
t )0≤t≤1 and (yε1/Ht)0≤t≤1 are the

same, due to the scale invariance of fBM.
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We also set

Λ2 = {κ − 1 | κ ∈ Λ1 \ {0}}

=
{
0, 1,

1

H
− 1, 2,

1

H
, 3, . . .

}
and

Λ′
2 = {κ − 2 | κ ∈ Λ1 \ {0, 1}}

=
{
0,

1

H
− 2, 1,

1

H
− 1, 2, . . .

}
.
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Next, we set

Λ3 := N〈Λ2〉

= {a1 + a2 + · · · + am |

m ∈ N+ and a1, . . . , am ∈ Λ2}

Λ′
3 := N〈Λ′

2〉

= {b1 + b2 + · · · + bm |

m ∈ N+ and b1, . . . , bm ∈ Λ′
2}
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Finally, we set

Λ4 := Λ3 + Λ′
3 = {ν + ρ | ν ∈ Λ3, ρ ∈ Λ′

3}

=: {0 = λ0 < λ1 < λ2 < · · · }

This index set Λ4 appears in our main theorem

i.e., the off-diagonal asymptotic expansion.

If H = 1/2 or the drift ≡ 0, all these index sets

above are just N.



18/36

4 Assumptions

(A1): The set of vectors {V1(a), . . . , Vd(a)}
linearly spans Rn.

(Elipticity at the starting point a)

=⇒ ∃ denisty pt(a, a′) for any t > 0.

i.e., P(y(t, a) ∈ U) =
∫

U

pt(a, a′)da′.
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H = HH : Cameron-Martin space of fBm (wt).
=⇒ ∀γ ∈ H is of finite q-variation for

q = (H + 1/2)−1 ∈ [1, 2).

For γ ∈ H, we denote by φ0
t = φ0

t (γ) be the

solution of the following Young ODE;

dφ0
t =

d∑
i=1

Vi(φ0
t )dγi

t with φ0
0 = a ∈ Rn.

For a′ 6= a, set Ka′

a := {γ ∈ H | φ0
1(γ) = a′}.
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(A2): ∃! γ̄ ∈ Ka′

a which minimizes H-norm.

Note that, if ”inf” exists, then

inf{‖γ‖H | γ ∈ Ka′

a } = min{‖γ‖H | γ ∈ Ka′

a }.

We also assume that ‖ · ‖2
H/2 is not so degenerate

at this γ̄ in the following sense.
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(A3): At γ̄, the Hessian of the functional

Ka′

a 3 γ 7→ ‖γ‖2
H/2 is strictly positive, that is,

if (−ε0, ε0) 3 u 7→ γ(u) ∈ Ka′

a is a smooth curve

in Ka′

a such that γ(0) = γ̄ and γ′(0) 6= 0, then

(d/du)2|u=0‖γ(u)‖2
H/2 > 0.

♣ Under (A1)–(A2), Assumption (A3) is equivalent

to exponential integrability of certain quadratic

Wiener functional, which appears in the proof of

off-diagonal asymptotics.
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Remark: Assume (A1) at a. If a′ is sufficiently

close to a, then (A2)–(A3) hold.

(∵ The implicit function theorem ×2.)
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5 Main theorem

Assume Vi are of C∞
b . Consider the RDE

dyt =
d∑

i=1

Vi(yt)dwi
t + V0(yt)dt

with y0 = a ∈ Rn.

Here, w stands for fractional Brownian RP with

Hurst parameter 1/3 < H ≤ 1/2.

♠ Our main theorem is a ”rough path version” of

Watanabe ’87 (and basically parallel to it.)
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[Theorem] Assume a 6= a′ and (A1)–(A3).

Then, as t ↘ 0, we have;

p(t, a, a′)∼ exp
(
−

‖γ̄‖2
H

2t2H

) 1

tnH

×
{
α0 + αλ1t

λ1H + αλ2t
λ2H + · · ·

}
for certain real constants αλj (j = 0, 1, 2, . . .).
Here, {0 = λ0 < λ1 < λ2 < · · · } are all the

elements of Λ4 in increasing order.
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Remark:

♠ When H = 1/2 or V0 ≡ 0, then Λ4 = N.

But, in fact, the odd terms cancel out.

So, the index set is actually 2N.

♣ When H = 1/2, our argument can be regarded

as a rough path proof of Watanabe (’87).

Compared to it, the large deviation part (i.e., the

localization procedure) looks quite straight forward.

(The following two cases are not covered, yet.

But, we believe those are not extremely important.)
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(a): In this paper the ellipticity assumption (A1) is

assumed. In Watanabe ’87, something like ”step

2-hypoellipticity” case was also studied.

(We simply did not try this case.)

(b): The condition on vector fields in Watanabe

’87 is not C∞
b , but is as follows: ”For all

k = 1, 2, . . . and 0 ≤ i ≤ d, ‖∇kVi‖ is bounded.”

(i.e., Vi itself may have linear growth.)

(cf. I. Bailleul recently solved RDEs with such

coefficients.)
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6 Outline of Proof

The scaled RDE; for ε ∈ (0, 1],

dyε
t =

d∑
i=1

Vi(yε
t )εdwi

t + V0(yε
t )ε

1/Hdt

yε
1 ≈ yε1/H in law, (∵ scale invariance of fBM).

Its CM shift by γ̄ ∈ H in (A2);

dỹε
t =

d∑
i=1

Vi(ỹε
t )d(εwi

t + γ̄) + V0(ỹε
t )ε

1/Hdt
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♠ Taylor expansion of Lyons-Itô map around γ̄

As ε ↘ 0, there exist φ0(γ̄), φκi(w, γ̄) s.t.

ỹε
1 ∼ φ0

1 + εκ1φκ1
1 + εκ2φκ2

1 + · · ·

= φ0
1 + ε1φ1

1 + ε2φ2
1 + ε1/Hφ

1/H
1 + · · · ,

where the index set is Λ1 = N + (1/H)N.

(Both in deterministic sense and D∞ sense.)

Set R1,ε := ỹε
1 − φ0

1 and R2,ε := ỹε
1 − φ0

1 − ε1φ1
1

The index sets for R1,ε/ε and R2,ε/ε2

are Λ2 and Λ′
2, respectively.
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• The deterministic sense was shown in

I.-Kawabi (’07) or I. (’10).

• We have to prove D∞ sense.

Sufficient to prove Lq sense for 1 < ∀q < ∞.

Moment estimate of R1,ε = ỹε − φ0(γ̄), i.e., the

first step of the induction, is most difficult.

Thanks to an integrability lemma by

Cass-Litterer-Lyons (’13), we can prove that part.
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♠ Watanebe’s pullback of δ-function

p(ε1/H , a, a′)= E
[
δa′(yε1/H )

]
= E

[
δa′(yε

1)
]

= E
[
δa′(yε

1)χη(ε, w)
]
+ (a small term).

Here, χη(ε, w) is a D∞-functional which looks like

the indicator of a small ball of a certain radius η > 0
centered at γ̄ (on RP space with Besov norms.)

By Schilder-type large deviation on RP space (= the

domain of Lyons-Itô map), the second term above is

negligible.
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By CM formula, the first term equals to

exp
(
−

‖γ̄‖2
H

2ε2

)
E

[
exp

(
−

1

ε
〈γ̄, w〉

)
δa′(ỹε

1)χη(ε, w +
γ̄

ε
)
]

Here, w = w1, the original fBM.

But, χη(ε, w + γ̄/ε) does not contribute to the

asymptotic expansion since it is of the form

1 + O(εN) for any large N ∈ N.

♣ So, it suffices to expand

exp
(
−

1

ε
〈γ̄, w〉

)
and δa′(ỹε

1)
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By Lagrange multiplier method, ∃ν ∈ Rn s.t.

〈γ̄, w〉 = 〈ν, φ1
1(γ̄, w)〉Rn

Under the condition ỹε
1 = a′ (= φ0

1(γ̄)),
we have φ1

1 + ε−1R2,ε
1 = 0 and hence

exp
(
−

1

ε
〈γ̄, w〉

)
= exp

(〈ν, R2,ε
1 〉

ε2

)
.

Index set for R2,ε
1 /ε2 is Λ′

2,

=⇒ Index set for RHS is Λ′
3
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[Remark] (i) This expansion takes place in

D̃∞ := ∩∞
k=0 ∪1<q<∞ Dq,k topology.

(ii) Loosely speaking, exp
(
〈ν̄, R2,ε

1 〉/ε2
)

a quadratic Wiener functional on ”exp”.

Integrabiity is quite subtle, even we have Fernique’s

theorem.

(A3) is assumed for this kind of quantity to be

integrable.
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Since φ0
1(γ̄) = a′, we have

δa′(ỹε
1) = δ0

(
ε ·

ỹε
1 − a′

ε

)
= ε−nδ0

(R1,ε
1

ε

)
.

• Index set for the expansion of R1,ε
1 /ε is Λ2.

• R1,ε
1 /ε is uniformly non-degenerate in the sense

of Malliavin under (A1).

• So, RHS admits asymptotic expansion in the space

of Watanabe disributions whose index set is Λ3.

(Watanabe’s asymtotic theorem)



35/36

p(ε1/H , a, a′)

∼ exp
(
−

‖γ̄‖2
H

2ε2

)
E

[
exp

(
−

〈γ̄, w〉
ε

)
δa′(ỹε

1)χη(ε, w +
γ̄

ε
)
]

∼ exp
(
−

‖γ̄‖2
H

2ε2

)
×

1

εn

{
α0 + αλ1ε

λ1 + αλ2ε
λ2 + · · ·

}
Here, {0 = λ0 < λ1 < λ2 < · · · } are all the

elements of Λ4 := Λ3 + Λ′
3 in increasing order.


