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Abstract: We study a stochastic differential equation in the sense of rough path theory driven by frac-
tional Brownian rough path with Hurst parameter H (1/3 < H < 1/2) under the ellipticity assumption
at the starting point. In such a case, the law of the solution at a fixed time has a kernel, i.e., a density
function with respect to Lebesgue measure. (See [1]). In this paper we prove a short time off-diagonal
asymptotic expansion of the kernel under mild additional assumptions. Our main tool is Watanabe’s
distributional Malliavin calculus developped in [2]. Unlike some other works on asymptotics for SDEs
driven by fBm, our RDE (1) has a drift term. This makes the asymptotic expansion quite comlicated.
Note also that when H = 1/2, SDE (1) is just a Stratonovich SDE driven by the usual Brownian motion.
Therefore, our result can be regards as a generaliztion of Watanabe [2].

Let (wi)i>0 = (w},...,wl);>0 be the d-dimensional fractional Brownian motion (fBm) with Hurst
parameter H € (1/3,1/2]. Let V; : R™ — R™ be C°, that is, V; is a bounded smooth function with
bounded derivatives of all order (0 < 4 < d). We consider the following (random) rough differential
equation (RDE) driven by fractional Brownian rough path, i.e., the natural lift of fBm (w;);

d
dye = > Vi(y)dwi + Vo(y)dt ~ with  yo=a € R" (1)
i=1

We will sometimes write y; = y:(a) etc. to make explicit the dependence on a.
First, we assume the ellipticity of the coefficient of (1) at the starting point a € R™.
(A1): The set of vectors {Vi(a),...,Vy(a)} linearly spans R™.

Under Assumption (A1), the law of the solution y; has a density p;(a,a’) with respect to the Lebesgue
measure da’ on R™ for any ¢ > 0. Let H = H be the Cameron-Martin space of fBm (w;). For v € H,
we denote by ¢9 = ¢?(v) be the solution of the following Young ODE;

d
dg) => Vi(@))dy;  with  ¢)=aecR"
i=1

Set, for a # a’, )
EKg ={yeH| () =a'}.
If we assume (A1) for all a, this set K¢ is not empty. If K¢ is not empty, it is a Hilbert submanifold

of H. Tt is known that inf{||y|j3 | v € K¢} = min{[|v|/+ | v € K*}. Now we introduce the following
assumption;

(A2): ¥ € K% which minimizes H-norm exists uniquely.

In the sequel, 7 denotes the minimizer in Assumption (A2). We also assume that the Hessian of || - ||3,/2
is not so degenerate at 7 in the following sense.

(A3): At 7, the Hessian of the functional K% 3+ |v||2,/2 is strictly larger than Idys /2 in the form
sense. More precisely, If (—eg,0) 3 u — f(u) € K¢ is a smooth curve in K¢ such that f(0) = 5 and
£'(0) # 0, then (d/du)?|u=ol| f(u)ll3,/2 > 0.



Now,we introduce several index sets for the exponent of the small parameter ¢ := t > 0, which will
be used in the asymptotic expansion. Unlike in many preceding papers, index sets in this paper are not
(a constant multiple of) N = {0,1,2,...} and are quite complicated.

Set Ay = {n1 + % | n1,ny € N}. We denote by 0 = kg < k1 < kg < --- all the elements of A;
in increasing order. Several smallest elements are explicitly given as follows; k1 = 1, kKo =2, k3 =
%, ke =3, Ksg=1+ %, ... As usual, using the scale invariance (i.e., self-similarity) of {Bm, we will
study the scaled version of (1). From its explicit form, one can easily see why A; appears.

We also set Ao = {r—1|x € A \{0}} ={0,1, 51,24, 3.. Jand Ay = {k—2 |k € A1\ {0,1}} =
{0, £ —2,1, &% —1,2,...}. Next we set

Agz{a1+a2+~-+am ‘ m€N+ andal,...,am GAQ}.
In the sequel, {0 =1y < 11 < 1o < ---} stands for all the elements of A3 in increasing order. Similarly,
Ay={a;+as+ - +an|meNy and ay,...,a, € AL}

In the sequel, {0 = py < p1 < p2 < ---} stands for all the elements of A% in increasing order. Finally,
A=A+ AN, ={v+p|veAs pe Aj}. Wedenote by {0 =Xy <A1 < Ay < ---} all the elements of Ay
in increasing order.

Below we state two main results of ours, which are basically analogous to the corresponding ones in
Watanabe [2]. However, there are some differences. First, the exponents on the shoulder of ¢ are not (a
constant multiple of) natural numbers. Second, cancellation of ”odd terms” as in p. 20 and p. 34, [2]
does not happen in general in our case. (If the drift term in RDE (1) is zero or if H = 1/2, then this
kind of cancellation takes place).

The following is a short time asymptotic expansion of the diagonal of the kernel function. This is
much easier than the off-diagonal case.

Theorem 1 Assume (A1l). Then, the diagonal of the kernel p(t,a,a) admits the following asymptotics
ast ™\, 0;

1
p(ta a, CL) ~ W(CO —+ Cl,ltylH —+ CVQtVQH + .- )

for certain real constants c,; (j =0,1,2,...). Here, {0 =vy <vi <vy <---} are all the elements of A3
in increasing order.

We also have off-diagonal short time asymptotics of the kernel function. This is our main result.

Theorem 2 Assume (A1)—(A3). Then, we have the following asymptotic expansion as t \, 0;

17113,
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1
p(t,a,a/) NGXP(* )t”iH{CAO JrCAlt)‘lHJrcht)‘?HJr... }

for certain real constants cx; (j = 0,1,2,...). Here, {0 = Ao < A1 < Ay < ---} are all the elements of
Ay in increasing order.
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