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The regularizing effects of irregular functions

Regularization by noise in ODEs/PDEs:

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

→ ODEs:

Xt = x+
∫

0

t

b(Xs)ds + Wt

where (Wt) is a BM in Rd and b a less-than-Lipshitz vectorfield. Many results: Vereten-
nikov, Davie, Krylov-Röckner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially:
bounded b: (in L∞ or with some particular integrability: LPS condition).

→ Transport equation:

dtu(t, x) + b(x) ·∇u(t, x)dt =∇u(t, x) · dWt

good theory for L∞ solutions and preservation of regularity. Flandoli–G.–Priola, Flandoli–
Attanasio, Flandoli–Maurelli, Flandoli–Beck–G.–Maurelli

→ Some other PDE: Vlasov–Poisson, point vortices in 2d.



Regularisation of PDEs

We want to provide a deterministic framework to discuss regularization by “perturba-
tions/modulation” for the following model PDEs:

• Transport equation: x∈Rd, t ! 0, w:R→Rd, b:Rd→Rd

∂tu(t, x) + ẇt ·∇u(t, x)+ b(x) ·∇u(t, x)= 0, u(0, ·) = u0.

• Non-linear Schrödinger equation: x∈T,R, t ! 0, w:R→R

∂tϕ(t, x) = i∆ϕ(t, x)ẇt + i|ϕ(t, x)|p−2ϕ(t, x).

• Korteweg–de Vries equation: x∈T,R, t! 0, w:R→R

∂tu(t, x)= ∂x
3u(t, x)ẇt + ∂x(u(t, x))2.

Joint work with Remi Catellier and Khalil Chouk.



A model problem

Consider the linear transport PDE

∂tu(t, x) + ẇt ·∇u(t, x) = f(x), u(0, ·) = 0.

Solutions are give explicitly by

u(t, x) =
∫

0

t

f(x +ws −wt)ds =Tt
wf(x−wt)

where given a function w: [0, 1]→Rd we define the averaging operator

Tt
wf(x) =

∫

0

t

f(x+ ws)ds, Tt,s
w f =Tt

wf −Ts
wf

acting on functions (or distributions) f :Rd→R.

Question: What is the relation between w, the (space) regularity of f and that of u(t, ·)?

If w is smooth we do not expect anything special to happen and u to have the same regularity
of f .



The averaging operator

◃ d=1, wt = t. Then if F ′(x)= f(x) we have Tt
wf(x)=

∫
0

t
F ′(x+ s)ds=F (x+ t)−F (x)

and T w: L∞→Lip:

|Tt
wf(x)−Tt

wf(y)|# ∥f ∥∞|x− y |, |Tt,s
w f(x)|# ∥f ∥∞|t− s|

◃ Tao–Wright: if w “wiggles enough” then Tt
w maps Lq into Lq ′

with q ′> q.

◃ Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

|Tt,s
w f(x)−Tt,s

w f(y)|# Cw∥f ∥∞|x− y |1−|t− s|1/2−

Problem: study the mapping properties of Tw for w the sample path of a stochastic process.



Irregular functions

Consider

Yt
w(ξ) =

∫

0

t

ei⟨ξ,ws⟩ds

then Tt
wf =F−1(Yt

wF(f)). Mapping properties of T w in (Hs)s∈R spaces can be discussed
in terms of Y w:

∥Tt,s
w f ∥Hs =

∥∥(1+ ξ2)s/2Yt,s
w (ξ)Ff(ξ)

∥∥
Hξ

s.

In our setting more convenient to look at the scale (FLα)α:

∥f ∥FLα =
∫

|f(ξ)|(1+ ξ2)α/2dξ

since Cα ⊆FLα.

Definition 1 (Catellier–G.) We say that w is (ρ, γ)–irregular if there exists a constant
K for which

|Yt,s
w (ξ)|# K(1+ |ξ |)−ρ|t− s|γ

for ξ ∈Rd and 0# s # t# 1.



Where we find irregularity?

Theorem 2 The fBM of Hurst index H is ρ–irregular for any ρ < 1/2H.

⇒ there exists functions of arbitrarily high irregularity and arbitrarily L∞-near any given
continuous function.

Lemma 3 An irregular function cannot be too regular.

Proof. If w ∈Cθ with αθ + γ > 1 and α∈ [0, 1], using the Young integral, we find

|t− s|= |eia(t− s)|=

∣∣∣∣∣∣

∫

s

t

eia−iawr

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Cαθ

drYr
w(a)︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸
Cγ

∣∣∣∣∣∣

#C Kw (|t− s|γ + |t− s|αθ+γ |a|α)∥w∥θ(1+ |a|)−ρ→ 0

if t > s and α < ρ. This implies that is not possible that θ > (1− γ)/ρ.



Facts about irregularity

◃ Not easy to say if a function is irregular.

◃ In d = 1 smooth functions are (ρ, γ) irregular for ρ + γ = 1. In particular if we insist on
γ > 1/2 we have ρ < 1/2.

◃ For d > 1 smooth functions are not irregular: if |t− s|≪ 1

∫

s

t

ei⟨a,wr⟩dr≃
∫

s

t

ei⟨a,ws
′⟩(t−s)dr≃ (1 + |⟨a, ws

′ ⟩|)−1$(1 + |a|)−ρ.

◃ If w is ρ–irregular and ϕ is a C1 perturbation then w + ϕ is at least ρ− (1− γ) irregular
since:

Yt,s
w+ϕ(ξ) =

∫

s

t

ei⟨ξ,wr+ϕr⟩dr =
∫

s

t

ei⟨ξ,ϕr⟩drYs,r
w (ξ)

and we can use Young integral estimates.

◃ If W is a fBM and Φ an adapted smooth perturbation then W + Φ is as irregular as W
(via Girsanov theorem).



Irregularity, what for?

Theorem 4 If w is ρ–irregular then

T w: Hs→Hs+ρ

and

T w:FLα→FLα+ρ.

Proof. Indeed

∥Tt,s
w f ∥FLα+ρ =

∫
dξ (1+ |ξ |)α+ρ|Yt,s

w (ξ)(Ff)(ξ)|

#Kw|t− s|γ
∫

dξ (1+ |ξ |)α|(Ff)(ξ)|= Kw|t− s|γ∥f ∥FLα.

Remark 5 More difficult to understand the mapping properties in other spaces, for example
Hölder spaces Cα. Only partial results available.



Transport equation

◃ Consider the transport equation with a perturbation:

∂tu(t, x) + ẇt ·∇u(t, x) + b(x) ·∇u(t, x) = 0, u(0, ·) = u0.

◃ In the Lipshitz case there is only one solution u given by the method of characteristics:

u(t, x) =u0(φt
−1(x))

where φt(x) = xt is the flow of the ODE

{
ẋt = b(xt) + ẇt

x0 =x

◃ Uniqueness of solutions is related to the uniqueness (and smothness) theory of the flow.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

xt =x0 +
∫

0

t

b(xs)ds + wt

we rewrite it in order to make the action of the averaging operator explicit: let θt = xt −wt:

θt = θ0 +
∫

0

t

b(ws + θs)ds = θ0 +
∫

0

t

(dsGs)(θs)

where Gs(x) =Ts
wb(x) so that dsGs(x) = f(ws +x).

If we assume that G is Cγ in time (γ >1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for θ ∈Cγ.

◃ Non-linear Young integral:

∫

0

t

(dsGs)(θs) = lim
Π

∑

i

Gti+1,ti(θti)

This limit exists if θ ∈Ct
γ and G∈Ct

γCx
ν with γ(1+ ν)> 1. The integral is in Ct

γ.



Young equations

Theorem 6 The integral equation

θt = θ0 +
∫

0

t

(dsGs)(θs)

is well defined for θ ∈Cγ and G∈Ct
γCx,loc

ν with (1 + ν)γ > 1.

• Existence of global solutions if G of linear growth.

• Uniqueness if G∈Ct
γCx,loc

ν+1 and differentiable flow.

• Smooth flow if G∈Ct
γCx

ν+k.

Theorem 7 The equation

xt =x0 +
∫

0

t

b(xs)ds + wt

has a unique solution for w ρ–irregular and b∈FLα for α > 1− ρ. In this case we can take
θ ∈C1 above and the condition for uniqueness (and Lipshitz flow) is G∈Ct

γCx
3/2.



Distributional vectorfields

◃ Say that x is controlled by w if θ = x−w ∈Cγ. In this case we have

Ix(b)=
∫

0

t

b(xs)ds =
∫

0

t

(dsTs
wb)(θs)

and the r.h.s. is well defined as soon as T wb∈Ct
γCx

ν.

◃ If w is ρ irregular and b∈FLα then T wb∈Ct
γFLx

α+ρ so if α+ ρ!ν we have Twb∈Ct
γCx

ν.

In this case Ix(b) can be extended by continuity to all b∈FLα and in particular we have given
a meaning to

∫

0

t

b(xs)ds

when b is a distribution provided x is controlled by a ρ-irregular path.

◃ For controlled paths the ODE

xt =x0 +
∫

0

t

b(xs)ds + wt

make sense even for certain distributions b as a Young equation for θ.



Regularization of ODEs at a glance



Transport equations driven by irregular paths

(joint work with R. Catellier)

We want to give a meaning and study the uniqueness issue for the transport equation

(∂t + b(x) ·∇+ ẇt ·∇)u(t, x)= 0

for u∈L∞ and w ∈Cσ with σ > 1/3 such that (w,W) is a geometric σ-Hölder rough path
such that w is ρ-irregular. For the moment only in the case div b =0.

◃ Weak formulation: We consider u as a distribution: ut(ϕ) =
∫

dxϕ(x) u(t, x) for all
ϕ∈L1(Rd). The integral formulation of the equation is

ut(ϕ)−us(ϕ) =
∫

s

t

ur(∇ · (bϕ))dr +
∫

s

t

ur(∇ϕ)drwr

for all ϕ∈S(Rd) and 0 # s # t.

We need to give a meaning to such an integral equation in order to discuss the regularization
by noise phenomenon. (No way out!)

◃ It is possible via the theory of controlled rough paths (G. JFA 2004).



Integration of controlled paths

Let (X,X) be a σ-Hölder rough path with σ > 1/3:

Xt,s =Xt,u +Xu,s + (Xt −Xu)⊗ (Xu −Xs), |Xt −Xs|+ |Xs,t|1/2 = O(|t− s|σ)

◃ We say that y ∈Ct
σ is controlled by X if there exists yX ∈Ct

σ such that

yt − ys − ys
X(Xt −Xs) =: ys,t

♯ = O(|t− s|2σ).

◃ For a controlled path y we can define the integral against X by compensated Riemman
sums:

It =
∫

0

t

ysdXs : =lim
Π

∑

i

yti(Xti+1−Xti) + yti

XXti+1,ti

◃ This integral is the only function (up to constants) which has the following property

It − Is = ys(Xt −Xs) + ys
XXt,s +O(|t− s|3σ).

In particular, the integral is itself controlled by X and IX = y.



Rough solutions to the transport equation

Definition 8 We say that u is a function controlled by w if for all ϕ∈S(Rd) we have

ut(ϕ)−us(ϕ)= us
w(ϕ)(wt −ws) + ut,s

♯ (ϕ)

where u·
w(ϕ)∈Cσ and |ut,s

♯ (ϕ)|$ |t− s|2σ.

Definition 9 If u is controlled we say that it is a L∞ solution of the rough transport equation
(RTE) if

ut(ϕ)−us(ϕ) =
∫

s

t

ur(∇ · (bϕ))dr +
∫

s

t

ur(∇ϕ)drwr

holds for all ϕ∈S(Rd), 0# s # t.

Remark: If σ >1/2 we can just assume that ut(∇ϕ)∈Ct
σ so that the rough integral becomes

a Young integral.

Equivalently, u is a solution to the RTE iff

ut(ϕ)−us(ϕ)=
∫

s

t

ur(∇ · (bϕ))dr + us(∇ϕ)(wt −ws) + us(∇2ϕ)Wt,s + O(|t− s|3σ)



RTE for Lipshitz vectorfields

Lemma 10 If b is Lipshitz there exists a solution to the RTE given by u(t,x)=u0(φt
−1(x)).

Proof. The proof proceed by approximation of (w, W) by (wε, Wε) and by stability of
the flow. Let φε be the approximate flow, then ut

ε(ϕ) =
∫

Rd u0

(
φt

ε,−1(x)
)
ϕ(x)dx =∫

Rd u0(x)ϕ(φt
ε(y))dy. Taylor expansion gives

ϕ(φt
ε(y)) = ϕ(φs

ε(y)) +
∫

s

t

∇ϕ(φr
ε(y))b(φr

ε(y))dr +∇ϕ(φs
ε(y))(wt

ε −ws
ε) +Oϕ(|t− s|2σ)

That is ut
ε(ϕ) = us

ε(ϕ) + us
ε(∇ϕ)(wt

ε − ws
ε) + Oϕ(|t − s|2σ). By weak compactness it is

possible to pass to the limit (along a subsequence) in this equation and obtain a controlled
path u = limεkuεk.

Uniqueness is proven by showing via a direct computation that

t -→
∫

Rd

u(t, φt(x))ρ(x)dx= ut(ρ ◦ φt
−1 )

is a constant function of t for all ρ∈S(Rd). This implies that u(t, φt(x))=u0(x). Uniqueness
depends only on the Lipschitz property of the flow.



Regularisation for RTE

Theorem 11 Let b∈FLα for α > 0 and α + ρ > 3/2 and let w be ρ-irregular. Then there
exists a unique solution to the RTE given by the method of characteristics.

Proof. Approximate b by bε, then by the previous theorem there exists a unique solution uε

to the RTE. Analysis of the approximate flow φε shows that this solution converges to a
controlled solution u of the RTE with vectorfield b. Since φ is Lipschitz we can prove again
uniqueness. %

Remark 12 The above result is path-wise. In particular b can depend on w.

Remark 13 If b∈Cα, b deterministic and w is a fBm of Hurst index H then the uniqueness
holds almost surely when α > 1− 1/(2H) and α >0. This recovers the results of Flandoli–
Gubinelli–Priola for the Brownian case but extend them well beyond the Brownian context.



Dispersive equations modulated by irregular signals

(joint work with K. Chouk)

Two simple dispersive models with ρ-irregular modulation w:

• Non-linear Schödinger equation: x∈T,R, t! 0

∂tϕ(t, x) = i∆ϕ(t, x)∂twt + i|ϕ(t, x)|p−2ϕ(t, x).

• Korteweg–de Vries equation: x∈T,R, t! 0

∂tu(t, x)= ∂x
3u(t, x)∂twt + ∂x(u(t, x))2.

To be compared to the non-modulated setting where ∂twt = 1 and studied in the scale of
(Hs)s spaces.

The equations are understood in the mild formulation

u(t) =Ut
wu(0) +

∫

0

t

Ut
w(Us

w)−1∂x(u(s))2ds.

with Ut
w = eiwt∂x

3
. (similarly for NLS). Here w can be an arbitrary continuous function.



Young formulation

Rewrite the mild formulation as

v(t) = (Ut
w)−1u(t) = u(0)+

∫

0

t

(dsXs)(v(s))

where X is the bi-linear operator

Xt(ϕ) = Xt(ϕ, ϕ) =
∫

0

t

(Us
w)−1∂x(Us

wϕ)2ds.

If w is ρ irregular then X ∈Cγ Liploc(Hα) for α >−ρ and ρ > 3/4.

The above equation has local solutions for initial conditions in Hα with locally Lipshitz flow.
Uniqueness in CγHα (for v).

⇒ Regularization by modulation. In the non-modulated case it is known that there cannot
be continous flow for α #−1/2 on T and α #−3/4 on R.

◃ Global solutions thanks to the L2 conservation and smoothing for α > 0 or an adaptation
of the I-method for −3/2# α < 0 and α >−ρ/(3− 2γ).

◃ NLS: global solutions for α ! 0 and ρ > 1/2.



Strichartz estimates

A different line of attack to the modulated Schrödinger equation comes from the application
of the following Strichartz type estimate which can be proved under the same ρ-irregularity
assumption.

Theorem 14 Let T > 0, p ∈ (2, 5],ρ > min (3

2
− 2

p
, 1) then there exists a finite constant

Cw,T > 0 and γ⋆(p) > 0 such that the following inequality holds:

∣∣∣∣

∣∣∣∣
∫

0

.

U.(Us)−1 ψs d s

∣∣∣∣

∣∣∣∣
Lp([0,T ],L2p(R))

≤Cw T γ⋆(p)|| ψ ||L1([0,T ],L2(R))

for all ψ ∈L1([0, T ], L2(R)).



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e:N (φ)= |φ|µ φ: (Debussche–de Bouard, Debussche–Tsutsumi)

Theorem 15 Let µ ∈ (1, 4], p = µ + 1, ρ > min (1, 3/2 − 2

p
) and u0 ∈ L2(R) then there

exists T ⋆ > 0 and a unique u∈Lp([0, T ], L2p(R)) such that the following equality holds:

ut = Ut u0 + i

∫

0

t

Ut(Us)−1 (|us|µ us) d s

for all t∈ [0, T ⋆]. Moreover we have that || ut||L2(R)= || u0||L2(R) and then we have a global
unique solution u∈Lloc

p ([0,+∞), L2p(R)) and u∈C([0,+∞), L2(R)). If u0∈H1(R) then
u∈C([0,∞), H1(R)).



Thanks.


