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The regularizing effects of irregular functions

Regularization by noise in ODEs/PDEs:

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

—  ODEs:

t
Xi=x +/ b(Xs)ds + W;
0

where (17;) is a BM in R? and b a less-than-Lipshitz vectorfield. Many results: Vereten-
nikov, Davie, Krylov-Rockner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially:
bounded b: (in L™ or with some particular integrability: LPS condition).

—  Transport equation:
dyu(t, x) + b(x) - Vu(t, z)dt = Vu(t,z) - dW,

good theory for L°° solutions and preservation of regularity. Flandoli-G.—Priola, Flandoli-
Attanasio, Flandoli-Maurelli, Flandoli-Beck—G.—Maurelli

—  Some other PDE: Vlasov—Poisson, point vortices in 2d.



Regularisation of PDEs

We want to provide a deterministic framework to discuss regularization by “perturba-
tions/modulation” for the following model PDEs:

e Transport equation: z ¢ R?, t >0, w: R — R%, b: RY— R4
Owu(t, z) +we- Vu(t,z) +b(x) - Vu(t,x) =0, u(0, ) = up.
e Non-linear Schrédinger equation: € T R, t >0, w: R — R
Opp(t,x) =iDp(t, x)iy +ilp(t, z)[P~2p(t, ).
e Korteweg—de Vries equation: x ¢ T, R, t >0, w: R — R

Owu(t, z) = O3u(t, o)y + Ox(u(t, )2

Joint work with Remi Catellier and Khalil Chouk.



A model problem

Consider the linear transport PDE
Ou(t, x) + we- Vu(t,z) = f(x), u(0,-)=0.

Solutions are give explicitly by
t
u(t, ) :/ flr+ws —wy)ds =T f(x — wy)
0

where given a function w: [0, 1] — R? we define the averaging operator

T f (x) = /O flotw)ds,  TPf=TPf — T

acting on functions (or distributions) f: R?— IR.
Question: What is the relation between w, the (space) regularity of f and that of w(t,-)?

If w is smooth we do not expect anything special to happen and u to have the same regularity

of f.



The averaging operator

>d=1,ws=t. Thenif F'(z)= f(x) we have T}" f fo "(z+s)ds=F(x+t)— F(x)
and T'": L°° — Lip:

T2 f () =T ()l < | f lloo]z — 9

~

T ()] <1 flloolt — s

> Tao—Wright: if w “wiggles enough” then T} maps L? into L9 with ¢’ > q.

> Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)
T f () = T f ()] < Cuwll f ool =yl [t = s]1/2~

Problem: study the mapping properties of 1™ for w the sample path of a stochastic process.



Irregular functions

Consider

t
V() = [ ertemds

then T f = F~Y(Y*F(f)). Mapping properties of T in (H?*),cR spaces can be discussed
in terms of Y

1T L= = || (L4 €)Y FF ()] e
In our setting more convenient to look at the scale (FL%),:

1/ ||z = / F(6)](1+ €2)°/2d¢
since C'“ C FL“,

Definition 1 We say that w is (p, ~v)—irregular if there exists a constant
K for which

Ve (OIS K (L+ (€))7t —s[7

for e R? and 0 <s<t<1.



Where we find irregularity?

QLI WA The fBM of Hurst index H is p—irregular for any p <1/2H.

= there exists functions of arbitrarily high irregularity and arbitrarily L°°-near any given
continuous function.

NIGTOEWCR An irregular function cannot be too regular.

Proof. If wc C? with afl +~v>1 and o €0, 1], using the Young integral, we find

t
yt—sy:yew(t—s)y:/ gia—iawn y(g)

SO Ky ([t = s+ [t = s[*]a|*)[wllo(1 +|a])7*—0

if t>s and o< p. This implies that is not possible that 6 > (1 — )/ p.



Facts about irregularity

> Not easy to say if a function is irregular.

> In d =1 smooth functions are (p, ) irregular for p + v = 1. In particular if we insist on
v>1/2 we have p<1/2.

> For d > 1 smooth functions are not irregular: if |t —s| <1

t t
/€i<a,wr>drg/ €i<a,w;>(t—8)dr2(1+\(a,w@\)_l%(lﬂab_p-

> If w is p—irregular and ¢ is a C'! perturbation then w + ¢ is at least p — (1 — ) irregular
since:

t

t
Yt’i";r@(é-):/ ei<£,wr+s0r>d7a:/ €i<€’%>dq~Y;fT(€)

S

and we can use Young integral estimates.

> If W is a fBM and ® an adapted smooth perturbation then W + ® is as irregular as W
(via Girsanov theorem).



Irregularity, what for?

If w is p—irregular then
TV: HS— H3*P
and

TY: FL& — FLoTP,
Proof. Indeed

\ T f g = / A€ (14 1) 2|V (E) (FF ()

<Kwrt—sw/ A€ (14 €D (FAE) = Kt — 57| £ | 710

m More difficult to understand the mapping properties in other spaces, for example
Holder spaces C'*. Only partial results available.



Transport equation

> Consider the transport equation with a perturbation:
Opu(t, x) +we- Vu(t,z) +b(z) - Vu(t,z) =0, u(0, ) = up.
> In the Lipshitz case there is only one solution u given by the method of characteristics:
u(t, ) =uo(¢y ' (2))
where ¢;(x) =z, is the flow of the ODE

{ it = b(LCt) —+ ’lbt

To—X

> Uniqueness of solutions is related to the uniqueness (and smothness) theory of the flow.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

t
Ty =To+ / b(xs)ds + wy
0

we rewrite it in order to make the action of the averaging operator explicit: let 0, = x; — wy:

t t
0, = Oy + / b(ws + 0,)ds = Oy + / (d,G)(0)
0 0
where G () =T"b(z) so that d;Gs(x) = f(ws+ x).

If we assume that G is C'7 in time (7 >1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for 6 € C7.

> Non-linear Young integral:

t
|| @GO =1m > Gua 0

This limit exists if 6 € C,' and G € C/CY with (14 ) > 1. The integral is in C}'.



Young equations

The integral equation

0,=00+ /0 (4G (0)

is well defined for 6 € C" and G € C'CY 1, with (1+v)y > 1.
e Existence of global solutions if GG of linear growth.
e Uniqueness if G € C]C% 1. and differentiable flow.

x,loc

e Smooth flow if GecCJCYT".

The equation

'
Ty= o+ / b(xs)ds + wy
0

has a unique solution for w p—irregular and b € FL™ for « > 1 — p. In this case we can take
0 € C' above and the condition for uniqueness (and Lipshitz flow) is G € C]Ci/z.



Distributional vectorfields

> Say that z is controlled by w if 0 =2 —w e C7. In this case we have

L= | " b(s)ds = / (dT)(6,)

and the r.h.s. is well defined as soon as T"b € C,'CY.

> If wis p irregular and b€ FL then T*bc C)FLS " so if a+ p>v we have T"b e C]CY.

In this case I..(b) can be extended by continuity to all b€ FL® and in particular we have given

a meaning to
t
/ b(zs)ds
0

when b is a distribution provided x is controlled by a p-irregular path.

> For controlled paths the ODE
t
Ty =10+ / b(xs)ds + wy
0

make sense even for certain distributions b as a Young equation for 0.



Regularization of ODEs at a glance
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Transport equations driven by irregular paths

(joint work with R. Catellier)

We want to give a meaning and study the uniqueness issue for the transport equation
(Or+b(x) -V +w-V)u(t,z) =0

for u e L>° and w € C'7 with ¢ >1/3 such that (w, W) is a geometric o-Hdlder rough path
such that w is p-irregular. For the moment only in the case divb=0.

> Weak formulation: We consider u as a distribution: u:(¢) = [ dze(x) u(t, z) for all
¢ € LY(RY). The integral formulation of the equation is

(o) —us() = (V- (bg))dr + / ur (V)

for all ¢ € S(RY) and 0 < s <.

We need to give a meaning to such an integral equation in order to discuss the regularization
by noise phenomenon. (No way out!)

> It is possible via the theory of controlled rough paths (G. JFA 2004).



Integration of controlled paths

Let (X, X) be a o-Holder rough path with o >1/3:
X, = Xput Koo + (X = Xo) @ (X = Xo), | Xe = X | +1X,o| 2= O(Jt — 5]%)
> We say that y € Cf is controlled by X if there exists y* € Cf such that
Y —ys — Yo (Xe — Xo) =1 ¢k , = O(|t — 5]>7).

> For a controlled path y we can define the integral against X by compensated Riemman
sums:

t
1 X
It — /0 ySdXS . _hg[n EZ: yti<th‘+1 _ th‘) + Y, th‘+17ti

> This integral is the only function (up to constants) which has the following property
I — I = yo(Xy — XJ) + y XX, o+ O(|t — 5.

In particular, the integral is itself controlled by X and ¥ = .



Rough solutions to the transport equation

DIMNAIEN Ve say that u is a function controlled by w if for all ¢ € S(RY) we have
ue(p) — us(p) = ul () (wy — ws) +uf ()

where u* () € C and |uf ()| S|t —s|?.

Y

DI TIAl T N /f 1 is controlled we say that it is a L°° solution of the rough transport equation
(RTE) if

()= usli)= [ (V- (bip))dr + / " (Ve)dy,

holds for all p € S(RY), 0<s<¢t.

Remark: If 0 >1 /2 we can just assume that u;(V¢) € Cf so that the rough integral becomes
a Young integral.

Equivalently, u is a solution to the RTE iff

ut(p) —us(p) = /t ur(V - (bp))dr +us(Vp) (we — ws) + u8<v2¢>wt,s +O(Jt - 5’30>



RTE for Lipshitz vectorfields

If b is Lipshitz there exists a solution to the RTE given by u(t,x) =uqo(®; '(x)).

Proof. The proof proceed by approximation of (w, W) by (w®, W¢) and by stability of
the flow. Let ¢° be the approximate flow, then ui(yp) = [, uo( 95 H(z) ) p(z)dr =
| ga uo(@)p(¢5(y))dy. Taylor expansion gives

p(9i(y)) = ¢(d5(y)) + /t Vo(or(y)b(dn(y))dr + V(d5(y)) (wi —ws) + Oy ([t — s]*7)

That is uf (@) = uS(p) + ui(Ve)(wi — ws) + O,(|t — s[*7). By weak compactness it is
possible to pass to the limit (along a subsequence) in this equation and obtain a controlled
path v =lim., u,,.

Uniqueness is proven by showing via a direct computation that

ts | u(t, du(@)p(z)dz =u(po ¢ )
Rd

is a constant function of ¢ for all p € S(IR?). This implies that u(t, ¢;(x)) = ug(x). Uniqueness
depends only on the Lipschitz property of the flow.



Regularisation for RTE

LI WBN Lt bc FLY for o >0 and oo+ p >3 /2 and let w be p-irregular. Then there
exists a unique solution to the RTE given by the method of characteristics.

Proof. Approximate b by b, then by the previous theorem there exists a unique solution .
to the RTE. Analysis of the approximate flow ¢. shows that this solution converges to a
controlled solution u of the RTE with vectorfield 6. Since ¢ is Lipschitz we can prove again

uniqueness. [

N FT WA The above result is path-wise. In particular b can depend on w.

NEOEL @R If b CY, b deterministic and w is a fBm of Hurst index H then the uniqueness

holds almost surely when o >1—1/(2H) and a > 0. This recovers the results of Flandoli—
Gubinelli—-Priola for the Brownian case but extend them well beyond the Brownian context.



Dispersive equations modulated by irregular signals

(joint work with K. Chouk)
Two simple dispersive models with p-irregular modulation w:

e Non-linear Schodinger equation: xt € T IR, t >0
Opo(t, x) =iAp(t, x)0pws +i|@(t, z)|P~2p(t, z).
e Korteweg—de Vries equation: xt € T, R, t >0
Owu(t, ) = 03u(t, x)Ow; + Op(ult, )2

To be compared to the non-modulated setting where 0;w; = 1 and studied in the scale of
(H?®)s spaces.

The equations are understood in the mild formulation
t
w(t) = Uu(0) + / UPU)~10, (u(s))2ds.
0

with YUY = w9z (similarly for NLS). Here w can be an arbitrary continuous function.
t y y



Young formulation

Rewrite the mild formulation as

v(t) = U") " u(t) =u(0) + /Ot (dsXs)(v(s))

where X is the bi-linear operator

Xi(o)=Xdeo0)= | L U)0,Ur) s

If w is p irregular then X € C7 Lipjo.(H®) for « > —p and p>3/4.
The above equation has local solutions for initial conditions in H“ with locally Lipshitz flow.
Uniqueness in C7H (for v).

= Regularization by modulation. In the non-modulated case it is known that there cannot
be continous flow for a <—1/2 on T and o < —3/4 on R.

> Global solutions thanks to the L? conservation and smoothing for oz > 0 or an adaptation
of the I-method for —3/2<a <0 and a>—p/(3 —27).

> NLS: global solutions for « >0 and p>1/2.



Strichartz estimates

A different line of attack to the modulated Schrédinger equation comes from the application

of the following Strichartz type estimate which can be proved under the same p-irregularity
assumption.

QLT Y et T > 0, p € (2,5],p > min (g — %, 1) then there exists a finite constant

Cw.1>0 and v*(p) > 0 such that the following inequality holds:

for all v € L'([0, T], L2(R)).

/' U(U,)1 by ds

0

<Cop TP Y| L1 (0,71, L2R))
L?([0,T],L??(R))



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e: N'(¢) = |¢|* ¢: (Debussche—de Bouard, Debussche—Tsutsumi)

LEDICOREY Let pc(1,4], p=p+1, p>min(1,3/2 — %) and u” € L*(R) then there
exists T* >0 and a unique v € LP([0,T], L°?(R)) such that the following equality holds:

t
ut:Utuo—i—i/ UU.) = (Jua|#us) d s
0

for all t € [0,’T]. Moreover we have that || u;||r2(r)= || uo||L2(r) and then we have a global
unique solution u € LY, ([0, +00), L*?(R)) and u € C([0,+00), L*(R)). If u® € HY(R) then

loc

u e C([0,00), H(R)).



Thanks.



