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Some problems in singular SPDEs /I

Define and solve (locally) the following SPDEs:

» Stochastic differential equations (1+0): u € [0, T] — R”
atu Zfl

with & : R — R™ m-dimensional white noise in time.
» Burgers equations (1+1): u € [0, T] x T — R”

Oru(t,x) = Au(t,x) + f(u(t, x))Du(t, x) + &(¢t, x)

with & : R x T — IR” space-time white noise.

Recall that
E, c cg—d/Z—
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Some problems in singular SPDEs /II

» Generalized Parabolic Anderson model (1+2):
uelo,T) xT? >R

0su(t, x) = Au(t, x) + f(u(t, x))&(x)

with & : T? — R space white noise.
» Kardar-Parisi-Zhang equation (1+1)

dih(t,x) = Ah(t,x) + "(Dh(t, x))* — 00" + &(t, x)

with & : R x T — R space-time white noise.
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Some problems in singular SPDEs /III

Define and solve (locally) the following SPDEs:

» Stochastic quantization equation (1+3)
duu(t,x) = Ault, x) + "ult,x)*" + &(t, x)

with&: R xT® - R space-time white noise.
» But (currently) not: Multiplicative SPDEs (1+1)

Oru(t, x) = Au(t,x) + f(u(t,x))&(t, x)

with £ : R x T — IR space-time white noise.

Joint work with P. Imkeller and N. Perkowski.
(Also K. Chouk and R. Catellier for (® )g).
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Rough differential equation

Consider the simple controlled PDE (1 smooth, fixed initial condition)
ouu(t,x) = Vu(t, x) + F(u(t, x))n(x)
u:R; xT? -5 R, 1: T? - R and smooth function F : R — R.
Problem
The solution map
n—u

is generally not continuous forn € Y2 withy < 1.

Reason: u € €Y and 1 € €Y 2 cannot be multiplied when 2y —2 < 0.
The rh.s. of the equation is not well defined.

Here €% = C([0, T}, Bg‘o,oo(”[l"d)) is the Holder-Besov space (or a local
version).
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What can go wrong?
Consider the sequence of functions x" : R — R?
1 25\ o 2
x(t) = 5(cos(27m t),sin(27tnt))

then x"(-) — 0in €Y ([0, T];R?) for any y < 1/2. But

t

16,2200 = | (s R(s)ds — 5 #10,0)(t) =0

=

The definite integral I(-, -)(¢) is not a continuous map ¥ x €Y — R
fory < 1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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A possible concept of solution

Goal: Show that ¥ : n — u factorizes as
)
n L 7m) 2 u

> Analytic step: show that wheny > 1/3:
O: X =€

is continuous. X = ImJ C €Y~ x ¢?Y~1 is the space of enhanced
signals (or rough paths, or models).

But in general ] is not a continuous map €Y~ — €Y1 x 271,

> Probabilistic step: prove that there exists a "reasonable definition" of
J(&) when & is a white noise. [(&) is an explicit polinomial in & so
direct computations are possible.
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Littlewood-Paley blocks and Holder-Besov spaces

We will measure regularity in Holder-Besov spaces €Y = BY, ..
fe®,yeRiff

IAfllee < Il 27, i>-1

F(AF)(E) = pi( EF(E)

where p; : RY — R are smooth functions with support ~ 2'.e7 when
i > 0 and form a partition of unity } ;- ; pi(§) = 1forall & # 0 so that

f=) Af

i>—1

in 8’.
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Paraproducts

Deconstruction of a product: f € ¢°,g € €Y

o= AfAg=f=<g+fog+f-g

ij>—1

f=g=8-f=) AfAg fog= ) AfAg

i<j—1 li—jl<1

Paraproduct (Bony, Meyer et al.)

f <g¢€ gmin(y+p,v)

foge®EYte onlyify+p >0
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Proof. Recall f € 6P, g € €.

i <j=suppF(AfAg) C2a/  i~j= suppF(AfAig) C2 %

Soifp >0
Af<g) = Z Z A(AfAG) =027 T) =f <g€%,
jij~q ii<j—1 Woufwffv)

whileif p < 0

Af <) =) D N(AfAR) =027 ) = f<ge @Vt
g ]
Jij~q :i<j—1 e A
Finally for the resonant term we have
Ag(fog) = Z AJ(AfAG) = Z 0271y = fog e FYHP

i~j2q i2q

but only if the sum converges.
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Small detour : Young integral
Take f € 6P, g € €Y withy,p € (0,1)
fDg =f <Dg+foDg+f = Dg
e ——
€y —1 €v+p—1

then

| g = | £ <Dg+ [ o g +7 - Do)

—
€Y GY+e

=f<g+EV°.

Compare with standard estimate for the Young integral in Holder
spaces (valid wheny + p > 1):

t
j Fudgu = filg: — g5) + O(1t — s *°).

‘ Expansion in smalleness of increments vs. Expansion in regularity
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Paraproduct as frequency modulation
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The main commutator estimate

All the difficulty is concentrated in the resonating term

fog= > AfAg

li—jl<1

which however "is" smoother than f < g if f or ¢ has positive
regularity.

Paraproducts decouple the problem from the source of the problem.

Commutator lemma
The trilinear operator C(f, g, h) = (f < g) o h —f(g o h) satisfies

ICU & M lp+v < Ifllligliplllly

when+vyv<Oand a+p+v >0, x<1.
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The Good, the Ugly and the Bad

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation B¢) and ¢ a smooth function. Then B € ¥ fory < 1/2.

©(B)DB = ¢(B) < DB+ ¢(B) o DB+ ¢(B) = DB

the Bad the Ugly the Good, €2Y —1

and recall the paralinearization

@(B) = ¢'(B) < B+ %Y

Then ,
o = 4 (o) Y o
©B)oDB=(¢@'(B)<B)oDB+ % OKDB
= ¢'(B)(BoDB) +%°!
Finally

@(B)DB = @(B) < DB+ ¢'(B) (Bo DB) +¢(B) = DB+ ¢!
N——

"Besov area"
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The Besov area

If d = 1 (or by symmetrization) we can perform an integration by
parts to get

Bo DB = %((BODB) + (DB o B)) = %D(BOB)

which is well defined and belongs indeed to ¢ ~1.

In general the Besov area B o DB can be defined and studied
efficiently using Gaussian arguments:

Bf o DB®* — Bo DB

almost surely in (51%)271 as e — 0.

Tools: Besov embeddings L7 (Q; C%) — LF(Q; Bf,’,;,) ~ B;;(LV(Q)), Gaussian
hypercontractivity LF(Q) — L?(Q), explicit L> computations.
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Paracontrolled distributions

Use the paraproduct to define a controlled structure. We say y € 2 if
x €6y

y=y <x+y
with y* € C°~Y and y* € CP.

> Paralinearization. Let ¢ : R — IR be a sufficiently smooth function
and x € €Y,y > 0. Then

e(x) = @'(x) < x+E>

> Another commutator: f,g € €°~Y, x € €Y

f=(g=<h=I(g) <h+%°

> Stability. (p < 2y)

so we can take @(y)* = ¢'(y)y".
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Homogeneisation of a random potential

> Consider the linear heat equation with a small random
time-independent (Gaussian) potential V

o,U(t, x) = AU(t, x) 4+ 2~ *V (x)U(t, x)

on (T/e)? and where ¢ is a small parameter and x < 2.

> Introduce macroscopic variables u. (t,x) = U(t/e?,x/¢) with
parabolic rescaling, then

O (t,x) = Aug(t,x) + Ve (x)ue (¢, x)

on T and where V. (x) = ¢ *V(x/¢).
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Homogeneisation of a random potential (II)

The covariance of the macroscopic noise is

E[Ve(x)Ve(y)] = e >*Cl(x —y)/e)

Theorem

Ifd > 2 then V. — 0in ¢~ %". While ifd = 2« then V. converges to the
space white noise on T.

So we are let to the study of the stability properites of the equation
Lu=nu

withn € ¢~*. This stability is easy to estabilish when 2 — 20 > 0 by
standard estimates in Besov spaces. We are concerned then with the
case o = 1.
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Transformation of PAM

> In order to understand the difficulties, let us perfom a change of
variable by letting u = eXv with £LX =n. We get

Lu =vLeX + XLy — 0,eX0,0

= veXLX — veX (0, X)? + X Lv — X0, X0,

so v solves
Lo = (0,X)*v + 9,X0,v.

Lety = 2 — a— the regularity of X.

> If we assume that (0,X)? € ¢2Y~? then we see that this equation can
be solved for v € €2Y since in this case 0,X9,v € €Y~ ! and we have a
continous map

(X, (0:X)2) € €Y x €Y 2> ve €
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Homogeneisation

Whenn =V, :

Theorem

Assume d > 2 and o« = 1 and let LX, = V¢ (+ technical conditions on the
covariance C), then (0,X¢)? — o2 in €°~.

>Ifd > 2 writing u, = eXev, we obtain that v, converges to the

solution of the PDE

Lo = 0%v

and so does u since X — 0in ¢Y.

> Now
Lu,=Veu, A Lu=0x*u

but Lu = o?u with 0 # 0. Lack of continuity of the problem wrt the
data V. in the ¥Y~2 topology if y — 2 < —1.
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Renormalization

Whend =2, x=1:

Theorem

Let y = 1—, then V. — & (white noise on T?) in €Y% and LX, =V, (+
technical conditions on the covariance C), then there exists a sequence
ce — +oo such that (3,:X.)?> —ce — (0,X)°% in €22,

Here, formally, 02 = 400, so there is not a well defined limit for ..
Consider i, (t,x) = e °‘u(t, x) which solves
Lite = Veue —celle

then for 9, = e X

<ii, we have the equation
L£0e = [(0:Xc)? — celDe + 0xX 0D

which behaves well in the limit ¢ — 0.
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Paracontrolled ansatz

> Question: What is the equation satisfied by i = lim._,q i ?
It should be someting like Lii = "fi&, — oofi" = i ¢ & (in which sense?)

> Note that (by paralinearization)
u=ev=eX<v+eX ==X <X)<0+€ =u<X+%€%
so u is controlled by X: u € 23 Similarly i, € @? Then
UeVe —ceile =il < Ve +ilgoVe +ile = Ve —celle

=i, < Ve + (e < X))o Ve +iif oV, + il = Ve —c.ii;
=l < Ve+it.(Xe o Ve —ce) 4 Clite, X, Vo) + it oV, +ii, > Ve
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Paracontrolled ansatz (II)

> So in the limit ¢ — 0 we have
e Ve—cCelle = Tl < Vs"‘ﬂs(XsOVe*CzH‘c(ﬁe:Xs/ V£)+ﬁgova+ﬁe = Ve
S <EFU(X0E)+ClI, X, E)+TF ok 411> &
= ilo&=0(1i" X X&)
where X ¢ & := lim,_,o(X: o V. —c¢).
> Question: What is the equation satisfied by it = lim,_, il ?

Indeed
Lol =" — ocoll" = 1o & = O(i1, i, X, X 0 &).

Where the rh.s. is well defined since ii is paracontrolled.
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gPAM -1 - therhs.

u:R,ExT?2 - R, & e €Y 2 v=1-. We want to solve (have
uniform bounds for)

Lu=Fu)é =F(u) < &+ F(u)o &+ F(u) = &.
> Paracontrolled ansatz. Take £LX = &, X € €Y and assume that
ue @}Z(Y:
u=uX<X+ut
with uf € €2Y and uX € €.
> Paralinearization:
Fu) =F'(u) < u+%€* = (F'(wu*) < X+ €%

> Commutator lemma:
Fu)o &= ((F'(w)u*) = X) o E+ €% 0§
= (F'(u)u®)(X 0 &) + C(F'(u)u*, X, £) + €*Y o §,
S €€ 2
if we assume that (X o &) € €>Y 2.
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gPAM - 1I - the Lh.s.

So if u is paracontrolled by X:
u=uX < X+u
and if X o & € ¥*Y~2 we have a control on the rh.s. of the equation:
F(u)e = F(u) < &+ F'(uX(X 0 &) + €77
What about the Lh.s.?

Lu=LuX < X+uX <&+ Lu — 0% <0, X

so letting uX = F(u) we have

Lul = —LF(u) < X+ F'(u)F(u)(X 0 &) + C2¥ 2
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gPAM - III - the paracontrolled fixed point.

The PDE
Lu=F(u)é
is equivalent to the system
0 X =¢
duf =(F'(u)F(u))(X 0 &) — Lf(u) < X+R(f,u, X, &) of
"enEY 2 €Y 2

u=F(u) < X + u

> The system can be solved by fixed point (for small time) in the space
2% if we assume that

Xe¥, (Xo0&)e€? 2.
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Paracontrolled solutions to gPAM

Theorem

Letd =2, =1,y =1—and small T > 0. There exist constants c. such
that letting u, the solution to

Lu, =VFue) — Capl(ua)

thenue - uinC¥ ase - 0and u € 9)28' is the unique weak solution in
2% to the equation

Lu=E&oF(u)=Fu) <&+ F (u)(Xo&)+GuX,u', X)

where
E=1mV,, Xo&=ImX, oV, —c,
£e—0 e—0

in CY~2 and C*Y~2 resp. and & has the law of the white noise on T2,
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Structure of the solution

> When & smooth, the solution to
0 = F(u)é, u(0) = ug
is given by u = @ (1, &, X o &) where
O:Rx €V 2 x5 €Y
is continuous for any y > 2/3 and z = @ (uy, &, @) is given by

z =F(z) < X + 2!
i7" =(F'(2)F(z)) @ — LF(z) < X+R(F,z, X, E) o &

"2y —2 cE3v—2

DIf (1, X" 0 &) — (§,1)Iin €Y 2 x €2Y~2 and
ou" = f(u")&", u(0) = ug
then 1" — u = ®(ug, &,1).
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Relaxed form of the RDE

> Note that in general we can have &' — &, £*" — & and
lim XMoo gl 2 lim K & [
> Take &", & smooth but &" — & in €Y 2. It can happen that
limX"o " =Xo&+¢ € ¢!
In this case u” — uand u = ®(&, X o & + ¢) solves the equation
Lu=Fu)&+ F'(u)F(u)o.

The limit procedure generates correction terms to the equation.

The original equation relaxes to another form in which additional
terms are generated.
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"Itd" form of the RDE

In the smooth setting u = @ (&, X o & + @) solves

Lu =F(u)&+ F'(u)F(u)e.

If we choose ¢ = —X o & then
v=0(,X0&+ @) =D(E,0)

solves
Lo =F)&—F'(v)F(v)Xo &

and has the particular property of being a continuous map of
& e €Y~ alone.
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The renormalization problem

If & is the space white noise we have

tee', XecC(o,T;6")
and , ]
Xo&=XoLX= EL(XOX)+§(DXODX)
1 1 2
= EL(XOX) — (DX < DX) + E(DX)
But now

%(DX)z =c+C¥-
with ¢ = 4o0!.

No obvious definition of X o £ can be given. But there exists c. such
that
Xeo&e—ce—"X0g  inCe".
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The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

Lu=f(u) o &=flu)&—c(f'(u)f(u)
this defines a new product, denoted by ¢. Now
flu)o&—c(f'(u)f (u)) = (f'(w)f () (Xo&—c)+C(f (u)f (u), X, E)+R(f, u, X)o

> The renormalized gPAM is equivalent to the equation

Lut = —Lf(u) < X+ Df(u) < DX + (f'(u)f (u))(X 0 & —¢)
+C(f"(u)f (), X, &) + R(f,u,X) 0 &
together with u = f(u) < X + u* and where

Xe€'™, Xo&=(Xo&—0c)e?, utes*.
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KPZ and its siblings:

Besides the generalized PAM, the following equations have been
solved using the paracontrolled approach (joint work with N.
Perkowski)

£ = 0; — A heat operator on T, & space-time white noise;
» KPZ equation: h: Ry x T — R,

Lh(t, x) = (3:h(t, x))* + E(t,);
» Burgers equation: u = 0,h;
Lu(t,x) = 0x(u(t, x)?) + 0:&(t, x);
» Stochastic Heat equation: h = logw

Lw(t,x) =w(tx)E(E, x).
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Other applications

» Gubinelli, Imkeller, P. (2012): Multidimensional extension of
Hairer’s (2011) generalized Burgers equation (o —d/2 > 1/3):

Opu(t, x) = —(—A)u(t,x) + G(u(t,x))Dru(t, x) + (¢, x);
» Catellier, Chouk (2013): Stochastic quantization equation d)g

(d = 3):
Lu(t,x) = —u(t,x)” + (t,x);

» Furlan (2014): Stochastic Navier Stokes equation (d = 3):

Lu(t,x) = —P((u(t,x) - Vu(t,x)) + &(t, x).
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Thanks
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Fluctuations of a growing interface

noise
diffusion
v Eta)

drift F(Vh(t,z))

h(t,z)

A model for random interface growth (think e.g. expansion of colony
of bacteria): h: R, x R — R,

Oh(t,x) = kAh(t,x)+  F(0h(t,x)) + n(t, x)
S—— S—— ~——
relaxation slope-dependent growth  noise with microscopic correlations
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Fluctuations of a growing interface
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The Kardar-Parisi-Zhang equation

» Kardar-Parisi-Zhang ‘84: slope-dependent growth given by
F(0xh), in a certain scaling regime of small gradients:

F(3.h) = F(0) + F'(0)d:h + F"(0)(3,h)* + ...
» KPZ equation is the universal model for random interface growth

d:h(t, x) = kAh(t, x) + A[(04h(t, x))? — co] + &t x)

relaxation renormalized growth space-time white noise

» This derivation is highly problematic since 0,/ is a distribution.
But: Hairer, Quastel (2014, unpublished) justify it rigorously via
scaling of smooth models and small gradients.

» KPZ equation is suspected to be universal scaling limit for
random interface growth models, random polymers, and many
particle systems;

> contrary to Brownian setting: KPZ has fluctuations of order +/3;
large time limit distribution of ¢~/3h(t, #>/3x) is expected to be
universal in a sense comparable only to the Gaussian
distribution.
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KPZ and its siblings:
» KPZ equation:

Lh(t,x) = (3:h(t,x))* + &(t, x);

h: Ry xR — R, £ = 0; — A heat operator, & space-time white
noise;

» Burgers equation:
Lu(t,x) = d(u(t, x)?) + d:&(t, x);

solution is (formally) given by derivative of the KPZ equation:
u = 0,h;

» solution to KPZ (formally) given by Cole-Hopf transform of the
stochastic heat equation: i = log w, where w solves

Lw(t,x) =w(t,x)E(E x).

» All three are universal objects, that are expected to be scaling
limits of a wide range of particle systems.

(39/57)



Stochastic Burgers equation
Take u = Dh

Lu = DE + Du?
to obtain the stochastic Burgers equation (SBE) with additive noise.

> Invariant measure: Formally the SBE leaves invariant the space
white noise: if 1y has a Gaussian distribution with covariance
Eluo(x)uo(y)] = 8(x —y) then for all ¢ > 0 the random function u(t, -)
has a Gaussian law with the same covariance.

> First order approximation: Let X(¢, x) be the solution of the linear
equation

i X(t,x) = 02X (t,x) + 0,&(t,x), xe€T,t>0
X is a stationary Gaussian process with covariance
EIX(t, )X (s, y)] = pjp—s| (x —y).

Almost surely X(¢,-) € €Y for any y < —1/2 and any ¢ € R. For any
t € R X(t,-) has the law of the white noise over T.
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Expansion /I
> Let u = X + u1 then

Luy = 0 (ug + X)? = 0, X% 420, (11 X) + 0,12
——
2

> Let XY be the solution to
£LXY =09,X? = XY e ¢

and decompose further u; = XV + up. Then

Ly = 20,(XVX) 420, (usX) + 0, (XVXY) 420, (42 XY) + 0, (12)?
— M

—3/2— =

> Define £XY = 20,(XYX) and u, = XV + u3 then X' € €1/2~

Lz = 20y (u3X) + 20, (X¥X) + 0 (XY XY) 420, (12XY) + Oy (112)?
H_/ H_/

H—/
—3/2— —3/2— =
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Expansion /II

> Recall our partial expansion for the solution

u=X+xV+2x¥+u

LU = 20, (UX) 420, (XYX) -+ (XY XY) +20, (2XY+U) XY ) +0, (2X ¥ +U)?

= 20, (UX) + £2X Y + X¥) +20,((2X¥ + U)XY) + 2,(2X¥ + U)?

and the regularities for the driving terms

X

XV

xY

XY

X‘O’

—1/2—

0—

12—

1/2—

We can assume U € €/2~ so that the terms

20.((2XY + U)XY) + 9,(2X¥ + U)?

are well defined.

The remaining problem is to deal with 20, (LX).
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Paracontrolled ansatz for SBE
> Make the following ansatz U = U’ < Q + U*. Then
LU=LU <Q+U' <LQ—0,U <0,Q+LU*
while

LU = 20,(UX) + £(2X Y + X¥) +20,((2X" + )XY) + 2, (2X¥ + U)

2

R(U)
=20, (U < X) +20,(U o X) +23,(U = X) + R(U)
=2(U < 0,X) +2(0,U < X) +20,(U 0 X) +20,(U > X) + R(U)
so we can set U’ = 2U and £Q = 0, X and get the equation

LU =—LU < Q+ 0, U <03,Q+2(3,U =
X) 420, (U o X) +29,(U = X) + R(U)

> Observe that Q, U, U’ € €'/?>~ and we can assume that U! € €'~.
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Commutator

> The difficulty is now concentrated in the resonant term U o X which
is not well defined.

> The paracontrolled ansatz and the commutation lemma give

UoX=02U <Q)oX+ U o X=2U(QoX)+C2U,Q,X)+U* 0 X
N
1/2— L=

> A stochastic estimate shows that Q o X € €0~
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Paracontrolled solution to SBE

> The final system reads
u=X+X"+2X¥+U

U=u'<Q+ut, u =2x"+2u
LU =403, (U(Qo X)) +40,C(U,Q,X) +20,(UF o X) —2LU < Q
+20,U < 0,0+ 2(0,U < X) +20,(U = X) +R(U)
> This equation has a (local in time) solution U = @ (J(&)) which is a

continuous function of the data J(&) given by a collection of
multilinear functions of &;

J(E) = (X, XY, X%, X%, XY,X 0 Q)
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Burgers equation and paracontrolled distributions

Lu(t,x) = 0xu®(t, x) + 0.&(, %), u(0) = ug.

Paracontrolled Ansatz
UE P ifu=X+XY+2XY+ ul with

ul =m_(u',Q) +ut.

» Paracontrolled structure: Can define u? continuously as long as
(Qo X) € C([0,T],¢°) is given (together with tree data
X, XV, X%, x% xv).

» Obtain local existence and uniqueness of paracontrolled
solutions. Solution depends pathwise continuously on extended
data J(£) = (& X, XY, X¥, X%, X¥,Q 0 X).
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KPZ equation

KPZ equation:
Lh(t,x) = (3:h(t,x))* + &(t,x),  h(0) = ho.

Expect h(t) € €Y%, 50 0,hi(t) € €~1/*" and (3.h(t))? not defined.
But: expand
u=Y+Y +2Y¥ 1 nP,

where LY =&, LYY =0,Y0,Y,...In general: 0,Y" = X*. Make
paracontrolled ansatz for h’:

W =n_(h',P)+ht
with i’ € C([0, T], ¢Y/%), ht € C([0,T), 6% ), LP = X. Writeh € Ep

Can define (9.h(t))? for h € Pypz and obtain local existence and
uniqueness of solutions.
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KPZ and Burgers equation
h e ,szpz if
h=Y+Y +2YY+nP, K= <P+h.
ue gzrbe if

u=X+x"V+2x¥+u? u? =u’ < Q+ul.

» Ifh e gzkpz, then 0,h € Ppe.

» If h solves KPZ equation, then u = 0,/ solves Burgers equation
with initial condition #(0) = 0.hy.

> If u € Prpe, then any solution 11 of Lh = u? + & is in Py,

» If u solves Burgers equation with initial condition #(0) = 9,ho,
and /1 solves £h = u? + & with initial condition /(0) = hg, then h
solves KPZ equation.
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KPZ and heat equation

Heat equation:
Lw(t,x) =w(tx)o&(t,x) =w(t,x)&(t x) —w(t x) 00, w(0)=wp.
Paracontrolled ansatz: w € Py, if
w= eY+YV+2YY’wP, wf =n_(w’,P) +wh

(comes from Cole-Hopf transform).
» Slightly cheat to make sense of product w ¢ & for w € Pipe:

wo & = Lw— eY+YV+2YY [pr WY + (oY + Y+ 2Y"))2]wl’]

20y oy LYY oYY 0

(agrees with renormalized pointwise product w ¢ & in smooth
case and with It6 integral in white noise case, continuous in
extended data).

» Obtain global existence and uniqueness of solutions.

> One-to-one correspondence between Zy;,, and strictly positive
elements of P .

» Any solution of KPZ gives solution of heat equation. Any strictly
positive solution of heat equation gives solution of KPZ equation.
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Para-modelled distributions

Lety > 0 and (T, TT,T") regularity structure. Say f is para-modelled,
f e 27, if there exists f™ € 27, with

f—m_(f", ) € C.

Example: Zf™ € &Y.
Consider rough path model, say

T =span(Z, #(2)Z, 4 (H(2)2)2,1, 7 (2), (F(2)2)). Try to solve
0iu = F(u)é.

(Simplified) para-modelled ansatz: u = Zu™ = 7w (1", 11) 4 u® with
u™ € 3. Equation for u*:

dsut = —0pt (u™, TT)+F(u)& = m_ (™, DIT)—7t (F(u™) % &, TT)+smooth.
To have u* € C3>* : choose expansion u™ so that all coefficients for

terms of homogeneity < 3cc — 1 cancel. Obtain a priori bounds on
||u*||3o and then on ||u™||5s«. Thus at least local existence of solutions.
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Stochastic Quantization
Stochastic quantization of (®*);: £ € C%/2~,u e CV/27,
U = Uy + Uy + 3.

Lu =&+ Au® —3ciu — cou)
Luy+Lusy = E+A (15 —3c1ur)+3A(us2 (5 —c1)) +3A (U ur ) +Aud, —Acou
>Luy =& = u € C V2, Lup = Au§ — 3cyuq) = up € CV/2-
Lusz = 3N (uso(u —Cl))+37\(u2u1)+6)\(u>3u2u1)+3?\(u>3u1)+?\u>2—?\czu
> Ansatz: us3 = 3Ausy < X + uf, with LX = (13 — 1)
Luf = —3ALusy < X+3ADusy < DX+3A(usp0(uf—c1)—cott)+3A (usy = (u3—cy
+ 3?\(u%u1) + 6\ (us3(uouq)) + 3?\(u§3u1) + Auiz
Usy o (U] — 1) — et = (ug o (uf — 1) — caun) + (us3 0 (45 — €1) — Catiz2)
(530 (1 —c1) —Catisz) = (BM(usz < X) o (uf —c1) — Cotza) +uf o (15 — 1)
= U5y (3A(X o (u? — 1)) — 2) + BAC(usp, X, (u? — 1)) + o (u? — 1)

> Basic objects:
(uf — 1), (3 —3crun), (BA(X o (uf — 1)) — ¢2), (uau1), (uFur)
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