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This talk is based on [7].
For a smooth enough function f ≥ 0 on Rn, we define the entropy of
f with respect to the Lebesgue measure by

Ent(f) =

∫
f(x) log f(x)dx−

∫
f(x)dx log

∫
f(x)dx.

In this talk, the integral without its domain is always understood as
the one over Rn, and we interpret that 0 log 0 = 0.

Let p ≥ 1. We denote by W 1,p(Rn) the space of all weakly differen-
tiable functions f on Rn such that f and |Df | (the Euclidean length of
the gradient Df of f) are in Lp(Rn). For f ∈ W 1,p(Rn), the following
Lp–logarithmic Sobolev inequality was shown for p = 2 by [11], p = 1
by [10], and 1 < p < n by [6]:

(1) Ent(|f |p) ≤ n

p

∫
|f(x)|pdx log

Lp

∫
|Df(x)|p dx∫
|f(x)|p dx

 .

Here,
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This is the best possible constant satisfying (1) for 1 ≤ p < n (cf.
[1, 6]).

For a general p > 1, with a deep insight, Gentil [9, Theorem 1.1]
gave inequality (1) by using a hypercontractivity inequality for the
unique viscosity solution to the Cauchy problem of a Hamilton-Jacobi
equation. However, his proof for inequality (1) is valid for a special
class of functions f in W 1,p(Rn).
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Our aim of this talk is to bridge the gap in the proof of [9, Theorem
1.1] and provide a supplementary proof of inequality (1) for all f ∈
W 1,p(Rn) and p > 1. The strategy of our proof is the following:

First, we show (1) for f ∈ W 1,p(Rn) such that

(3) f ∈ C1(Rn), 0 < f ≤ 1 in Rn, and D(log f) is bounded on Rn.

Second, we approximate f ∈ W 1,p(Rn) by a sequence of functions
satisfying (3) by several steps. This is the key point to derive (1).
An important tool is the following Fatou–type inequality: if a family
{fϵ}0<ϵ<1 of nonnegative and measurable functions on Rn approximates
a function f in some sense, then

(4) lim inf
ϵ→0+

∫
fϵ(x)

p log fϵ(x)dx ≥
∫

f(x)p log f(x)dx.

Finally, by using these approximations, we show that Lp–logarithmic
Sobolev inequality (1) holds true for all f ∈ W 1,p(Rn) and p > 1.

I express my hearty appreciation to Ivan Gentil for his encourage-
ment.
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