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This talk is based on [7].
For a smooth enough function f > 0 on R", we define the entropy of
f with respect to the Lebesgue measure by

Ent(f) = / () log f(z)dz — / f(x)dz log / f(x)dz.

In this talk, the integral without its domain is always understood as
the one over R", and we interpret that 0log(0 = 0.

Let p > 1. We denote by WP(R") the space of all weakly differen-
tiable functions f on R™ such that f and |Df| (the Euclidean length of
the gradient Df of f) are in LP(R™). For f € WP(R"), the following
LP-logarithmic Sobolev inequality was shown for p = 2 by [11], p = 1
by [10], and 1 < p < n by [6]:
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This is the best possible constant satisfying (1) for 1 < p < n (cf.
[1, 6]).

For a general p > 1, with a deep insight, Gentil [9, Theorem 1.1]
gave inequality (1) by using a hypercontractivity inequality for the
unique viscosity solution to the Cauchy problem of a Hamilton-Jacobi
equation. However, his proof for inequality (1) is valid for a special
class of functions f in W'P(R").
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Our aim of this talk is to bridge the gap in the proof of [9, Theorem
1.1] and provide a supplementary proof of inequality (1) for all f €
WHP(R") and p > 1. The strategy of our proof is the following:

First, we show (1) for f € WHP(R") such that

(3) feCYR"),0< f<1inR" and D(log f) is bounded on R".

Second, we approximate f € WP(R") by a sequence of functions
satisfying (3) by several steps. This is the key point to derive (1).
An important tool is the following Fatou—type inequality: if a family
{fc}o<e<1 of nonnegative and measurable functions on R approximates
a function f in some sense, then

(4) lierggﬂf/fe(x)p log fe(x)dx > /f(x)plog f(z)dz.

Finally, by using these approximations, we show that LP—logarithmic
Sobolev inequality (1) holds true for all f € W?(R™) and p > 1.

I express my hearty appreciation to Ivan Gentil for his encourage-
ment.
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