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Introduction.
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The Loewner-Kufarev equation. I

For a given increasing/decreasing subordination chain (Ω(t))0≤t≤T

in the complex plane C, each of which includes 0 as an interior
point, it is known that there exists a family (νt(θ)dθ)0≤t≤T of
measure on the unit circle S1 such that

∂gt
∂t

(z) = zg ′
t(z)

1

2π

∫ 2π

0

e iθ + z

e iθ − z
νt(θ)dθ︸ ︷︷ ︸

=:p(t,z)

and Rep(t, z) is positive/negative if Ω(t) is increasing/decreasing,
where gt : the unit disk D0 → Ω(t) is the unique conformal
mapping with gt(0) = 0 and g ′

t(0) > 0 for a.a. t ∈ [0,T ]
(Pommerenke).
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The Loewner-Kufarev equation. II
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By extending gt continuously, we have a family of loops

gt : S
1 = ∂D0 → ∂Ω(t), 0 ≤ t ≤ T .

Therefore, randomizing the Loewner-Kufarev equation, we would
have a probability measure on loop space{

(image of) continuous S1 → C∗}
(-valued path space).

In fact, we consider a stochastic Loewner-Kufarev equation in
subsequent sections, and then we study its properties.
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Background. I

Several authors have investigated constructions and properties of
measures on loops, and conjectured existence of such measures
which admit some prerequired properties. These researches seem
to be initiated by Malliavin(s).

• Malliavin (1999)

— constructed a canonic diffusion “on” Diff+(S
1). Solving a

corresponding conformal welding problem, this would induce a
probability measure on loops through the (extended) Kirillov’s
bijection.

• Shavglidze (2000)

— constructed a measure on C 1-diffeos. Diff1
+(S

1). This measure

is probed to be quasi-invariant under Diff+(S
1) y Diff1

+(S
1)

and then the Schwarzian derivative appears in the density,
which is striking the fact that the Schwarzian derivative is a
1-cocycle on Diff+(S

1).
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Background. II

Then our main result is

Theorem

Malliavin’s canonic diffusion has a similar defining equation to a
stochastic Loewner-Kufarev equation.
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Background. III

• Airault-Malliavin (2001)

— began to seek a Gaussian realization of L2-reps of Virasoro
algebra. This was inspired by Segal (1963), Bargmann (1961)
and Frenkel (1984), in which they gave Gaussian realizations of
L2-reps of ∞-dim. groups/algebras.

It has been known by

• Kirillov-Yuriev (1988)

— that ∃ a representation of Virasoro algebra on univalent
functions on D0 (rather than D0 \ {0} and strictly speaking, on
the “coefficient body” of univalent functions).

However,

• Airault-Malliavin-Thalmaier (2002)

— ∃ no probability measures on univalent functions, which
make Kirillov-Yuriev’s one be a unitary rep. of Virasoro
algebra.
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Background. IV

Inspired by Malliavin’s work and SLE theory,

• Kontsevich-Suhov (2007)

— conjectured the unique existence of non-zero assignment

Riemann
surface Σ

7→ (|DetΣ|)⊗c -valued
measure λΣ,

which is locally conformally covariant with parameter
c ∈ (−∞, 1]. Furthermore, they proposed a reduction of this
problem, to construct a scalar measure on simple loops in C∗,
surrounding the origin, satisfying a restriction covariance
property. They mentioned that this property has an
infinitesimal version, infinitesimal restriction covariance
property, formulated by a family of integration by parts
formulae on space of loops. At this stage, in belief, several
natures of Virasoro algebra or Virasoro-Bott group should
appear, which is the main motivation of our study.

10 / 36



Background. V

• Werner (2008)

— constructed such an assignment when c = 0. However, in the
case c = 0, Kontsevich-Suhov’s framework reduces to be trivial
(everything is conformally invariant rather than covariant),
which implies that one would not be able to see any Virasoro
nature.

• Benoist-Dubédat

— announced that they solved the existence part of the
conjecture when c = −2.
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Background. VI

One of our results can be stated very roughly as follows.

Theorem (rough version.)

A stochastic Loewner-Kufarev equation induces a probability
measure P on “space of loops” such that

“

∫
Loops
(L2F )(L)P(dL) =

∫
Loops
F (L)Sφ(0)P(dL) ”,

for any “polynomial function” F , where

B (L2F )(L) =
d

du

∣∣∣∣
u=0

F
(
exp(−uz3

d

dz
)(L)

)
,

B φ is the unique conformal mapping from D0 to the domain
surrounded by L and including the origin with φ(0) = 0 and
φ′(0) > 0,

B Sφ(z) :=
φ′′′(z)
φ′′(z) − 3

2
φ′′(z)2

φ′(z)2
: the Schwarzian derivative of φ.
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Background. VII

The practical IbP will be established on the state space R× CN

rather than the genuine loop space. However, the spirit is on the
space of loops through the following embeddings:

Space of Loops ↪→
Space of

g(z) = C (z + c1z
2 + c2z

3 + · · · )

with

{
g(0) = 0,
g ′(0) > 0

↪→

R× CN

∈

(C , c1, c2, · · · )
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Introducing a Stochastic Loewner-Kufarev
Equation.

14 / 36



The Loewner-Kufarev equation, revisited. I

Recall that the Loewner-Kufarev equation forms as

∂gt
∂t

(z) = zg ′
t(z)

1

2π

∫ 2π

0

e iθ + z

e iθ − z
νt(θ)dθ.

• The input (νt)0≤t≤T has a meaning of “density” of the
boundary variation (∂gt(D0))0≤t≤T ,

and then, following Friedrich’s idea, we rewrite the equation as

ġt = −Lνt (gt)

where the “vector field” Lνt acts on univalent functions by

(Lνt f )(z) := −zf ′(z)
1

2π

∫ 2π

0

e iθ + z

e iθ − z
νt(θ)dθ.
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The Loewner-Kufarev equation, revisited. II

Assuming a sufficient regularity on νt(θ), we write its Fourier series
as

νt(θ) = a0(t) +
∞∑
k=1

{
ak(t) cos(kθ) + bk(t) sin(kθ)

}
.

Then the Loewner-Kufarev equation can be written as

ġt = −a0(t)L1(gt)−
∞∑
k=1

{
ak(t)Lcos(k·)(gt) + bk(t)Lsin(k·)(gt)

}
,

where 1(θ) ≡ 1. Although the Loewner-Kufarev dynamics is not a
linear system, we can heuristically understand from the last
equation that fundamental loops (or closed strings), each of which
is the image of S1 mapped by the solution of the system associated
to each of L1, Lcos(k·) and Lsin(k·), are piled with weights ak ’s and
bk ’s at the infinitesimal level, and accordingly give a loop gt(S

1).
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Randomizing the Loewner-Kufarev equation. I

This observation turns to make us give randomness to the weights
ak and bk to construct a measure on the space of loops. We
experimentally choose a singular νt(θ) (recall that
−νt(θ) = δe−iBt (θ) in the radial SLE case) as a0(t) = α−1

0 t and

ak(t) = “α−1
k Ḃ

(k,1)
t ” bk(t) = “− α−1

k Ḃ
(k,2)
t ”

for k ≥ 1, where

• (B
(k,1)
t ,B

(k,2)
t ), k ≥ 1: indep. 2-dim. BMs,

• (αk)k≥1: positive real numbers.
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Randomizing the Loewner-Kufarev equation. II

Using the relations, for k ≥ 1 and |z | < 1,

B 1

2π

∫ 2π

0

e iθ + z

e iθ − z
cos(kθ)dθ = zk ,

B 1

2π

∫ 2π

0

e iθ + z

e iθ − z
sin(kθ)dθ = −izk ,

our Loewner-Kufarev equation becomes

“
∂gt
∂t

(z) = zg ′
t(z)

{
α−1
0 t +

∞∑
k=1

α−1
k (Ḃ

(k,1)
t + i Ḃ

(k,2)
t )zk

}
”.

This motivates us to consider the following SDE

dgt(z) = zg ′
t(z)

{
dX 0

t +
∞∑
k=1

zkdX k
t

}
, g0(z) ≡ z ∈ D0,

where X 0
t = α−1

0 t, X k
t = α−1

k Z k
t for k ≥ 1 and Z 1

t ,Z
2
t , · · · are

infinitely many indep. complex BMs.
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Randomizing the Loewner-Kufarev equation. III

Remark.

(i) Our SDE

dgt(z) = zg ′
t(z)

{
dX 0

t +
∞∑
k=1

zkdX k
t

}
, g0(z) ≡ z ∈ D0,

is not usual because its diffusion- and drift- coefficients involve
the derivative of the stochastic flow. Therefore the classical
arguments to deal with typical SDEs can not be applied.

(ii) The parameters αk ’s should be taken suitably so that the
RHS converges.
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A Comparison with Malliavin’s Canonic
Diffusion.
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Malliavin’s canonic diffusion. I

Malliavin (1999) constructed a diffusion “on” Diff+(S
1) by

considering the following SDE

dσt =
∞∑
k=1

ck(σt) ◦ dx
(k,1)
t + sk(σt) ◦ dx

(k,2)
t√

hk + c
12(k

3 − k)

on Diff+(S
1), where h > 0 and c > 0. The vector fields

{ck , sk}∞k=1 on Diff+(S
1) are given by

ck(σ) =
d

dε

∣∣∣∣
ε=0

e
ε cos(kθ)

d

dθ ◦ σ, sk(σ) =
d

dε

∣∣∣∣
ε=0

e
ε sin(kθ)

d

dθ ◦ σ

for σ ∈ Diff+(S
1), and xkt = (x

(k,1)
t , x

(k,2)
t ), k ≥ 1 are indep.

2-dim. BMs.
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Malliavin’s canonic diffusion. II

Once we specify an initial diffeomorphism σ ∈ Diff+(S
1), one has

a diffusion (σt)t≥0 on homeomorphism group of S1 rather than
Diff+(S

1). This diffusion is called the canonic diffusion “on”
Diff+(S1).
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Comparison with Malliavin’s canonic diffusion. I

Theorem

Malliavin’s canonic diffusion has a similar defining equation to a
stochastic Loewner-Kufarev equation. More precisely, let
(gt)0≤t≤T be univalent functions on D0 satisfying our stochastic
L-K equation. Then the inverse process g−1

t : gt(D0) → D0 obeys

dg−1
t (z) = −g−1

t (z)
{ dt

α0
+

∞∑
k=1

g−1
t (z)k

dZ k
t

αk

}
.

Let σt be Malliavin’s canonic diffusion. Then the stochastic
process σt(1) on S1 verifies

dσt(1) = −σt(1)
{γ

2
dt +

∞∑
k=1

−iRe
(
σt(1)

kdZ̃ k
t

)√
hk + c

12(k
3 − k)

}
,

where γ :=
∑∞

k=1{hk + c
12(k

3 − k)}−1 and Z̃ k
t := x

(k,1)
t − ix

(k,2)
t .
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Comparison with Malliavin’s canonic diffusion. II

Proof.
Firstly, we have

0 = d
(
gt(g

−1
t (z))

)
=

(
dgt

)
(g−1

t (z)) + g ′
t(g

−1
t (z)) ◦ dg−1

t (z)︸ ︷︷ ︸
=g ′

t (g
−1
t (z))dg−1

t (z)

,

so that (with putting w := g−1
t (z)),

(dgt)(z) = −
(
dgt

)
(w)

g ′
t(w)

= −
wg ′

t

(
w
){

dX 0
t +

∑∞
k=1 w

kdX k
t

}
g ′
t(w)

= −g−1
t (z)

{
dX 0

t +
∞∑
k=1

g−1
t (z)kdX k

t

}
.
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Comparison with Malliavin’s canonic diffusion. III

On the other hand, with defining θ0 : Diff+(S
1) → R by

θ0(σ) := θ(σ(1)), σ ∈ Diff+(S
1),

we see easily that(
ckθ0

)
(σ) = cos(kθ0(σ)),

(
skθ0

)
(σ) = sin(kθ0(σ)).

Then we have

dθ0(σt) =
∞∑
k=1

(
ckθ0

)
(σt) ◦ dx (k,1)t +

(
skθ0

)
(σt) ◦ dx (k,2)t√

hk + c
12 (k

3 − k)

=
∞∑
k=1

cos(kθ0(σt)) ◦ dx (k,1)t + sin(kθ0(σt)) ◦ dx (k,2)t√
hk + c

12 (k
3 − k)

=
∞∑
k=1

cos(kθ0(σt))dx
(k,1)
t + sin(kθ0(σt))dx

(k,2)
t√

hk + c
12 (k

3 − k)
,
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Comparison with Malliavin’s canonic diffusion. IV

where in the last equality, the stochastic contraction appeared.

Writing Z̃ k
t := x

(k,1)
t − ix

(k,2)
t , the above equation can be written as

dθ0(σt) =
∞∑
k=1

Re
(
eikθ0(σt)dZ̃ k

t

)√
hk + c

12(k
3 − k)

,

so that

d

=σt(1)︷ ︸︸ ︷
eiθ0(σt) = ieiθ0(σt) ◦ dθ0(σt)

= −1

2
eiθ0(σt)γdt + ieiθ0(σt)

∞∑
k=1

Re
(
eikθ0(σt)dZ̃ k

t

)√
hk + c

12(k
3 − k)

,

where γ :=
∑∞

k=1{hk + c
12(k

3 − k)}−1. �
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Comparison with Malliavin’s canonic diffusion. V

Remark.

B Although it is known that the complexification of Diff+(S
1)

does not exist, one can write down heuristically the
corresponding SDE on the complexification, and a heuristic
calculation shows that the canonic diffusion “on” the
non-existing complexification of Diff+(S

1) is a solution to our
stochastic Loewner-Kufarev equation.

B Existence- and uniqueness- properties of solutions to our
stochastic Loewner-Kufarev equation have not been
established yet. Instead of that, we shall focus on a hierarchy
of the equation.
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A Hierarchical Solution to Stochastic
Loewner-Kufarev Equation.

28 / 36



A Hierarchy of Stochastic L-K Equation. I

Proposition

Let a family of holomorphic gt : D0 → C satisfy the SDE

dgt(z) = zg ′
t(z)

{
dX 0

t +
∞∑
k=1

zkdX k
t

}
, g0(z) ≡ z ∈ D0

where X 0
t = α−1

0 t and X k
t = α−1

k Z k
t for k ≥ 1. We parametrize gt

as
gt(z) = C (t)

(
z + c1(t)z

2 + c2(t)z
3 + c3(t)z

4 + · · ·
)
.

Then we have
dC (t) = C (t)dX 0

t ,
dc1(t) = dX 1

t + c1(t)dX
0
t ,

dcn(t) = dX n
t +

n−1∑
k=1

(k + 1)ck(t)dX
n−k
t + ncn(t)dX

0
t

n ≥ 2.
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A Hierarchy of Stochastic L-K Equation. II

Although it is not known whether or not the equation for gt has a
solution, we notice that the previous system consists of linear
stochastic differential equations with constant coefficients and
hence this system can be integrated and admits a unique strong
solution (C (t), c1(t), c2(t), · · · ).

Definition

We call a sequence (C (t), c1(t), c2(t), · · · ) of C-valued stochastic
processes satisfying the previous system of SDEs a hierarchical
solution to the stochastic L-K equation

dgt(z) = zg ′
t(z)

{
dX 0

t +
∞∑
k=1

zkdX k
t

}
, g0(z) ≡ z ∈ D0.

In the deterministic case, the dynamics of the corresponding
(C (t), c1(t), c2(t), · · · ) is studied by Vasiliev and his coauthors.
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Integration by Parts Formula.
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Kirillov-Neretin Polynomials.

Let

Aut(O) :=
{
c0(z +

∞∑
k=1

ckz
k+1) ∈ C[[z ]] : c0 6= 0

}
.

We regard (c1, c2, · · · ) as a coordinate on Aut(O)/Cc0.
For each holomorphic function

f (z) = f ′(0)(z +
∞∑
k=1

ckz
k+1) ∈ Aut(O) and constant c , the

Kirillov-Neretin polynomials (of conformal weight h = 0)
Pn(c1, · · · , cn) n ≥ 0 are defined by

∞∑
n=0

Pn(c1, · · · , cn)zn =
cz2

12
Sf (z),

where Sf (z) =
f ′′′(z)
f ′′(z) − 3f ′′(z)2

2f ′(z)2
is the Schwarzian derivative of f .
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Kirillov-Yuriev’s representation of Virasoro.

The positive part of an well-known representation {−zn+1 d
dz }n∈Z

of Witt algebra lifts on Aut(O)/Cc0 by

zn+1f ′(z) = Lnf , n ≥ 1

where with setting ∂n =
∂

∂cn
,

• Ln = ∂n +
∞∑
k=1

(k + 1)ck∂n+k , n ≥ 1.

Kirillov-Yuriev (1988) showed {Ln}n≥1 can be extended to a
collection {Ln}n∈Z of operators on Aut(O) satisfying the
commutation relation of the Virasoro algebra

[Ln, Lm] = (n −m)Ln+m +
c

12
(n3 − n)δn,−m.
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Integration by Parts I

Theorem

Let (C (t), c1(t), c2(t), · · · ) be a hierarchical solution to the
stochastic L-K equation and set Pn(t) := Pn(c1(t), · · · , cn(t)) for
each n ≥ 0. Then for each polynomial F (c1, c2, · · · ), we have

E
[
(LnF )(c1(t), c2(t), · · · )

]
= E

[
F (c1(t), c2(t), · · · )×

 combination of c1(t)
and Neretin polynomials

up to n-th order


︸ ︷︷ ︸

=:divPLn

]

for a.a. t and n ≥ 1. Where the divergence terms may include the
stochastic integrals of (Pk(s))0≤s≤t , k = 1, 2, · · · , n.
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Integration by Parts II

For example, with setting α−1
0 = 0 and γk := c

12(k
3 − k) for

simplicity, it holds that
γ2
α2

divPL2 = P2(t) which is equal to Sgt (0)

if gt(z) = C (t)(z +
∑∞

k=1 ck(t)z
k+1) converges and then, with

setting α2 :=
c
12γ2 (> 0 if c 6= 0), the last theorem is stating

roughly that

“

∫
Loops

(L2F )(L)P
(
gt(S

1) ∈ dL
)
=

c

12

∫
Loops

F (L)Sgt (0)P
(
gt(S

1) ∈ dL
)
”,

for any “polynomial function” F . Finally, we remark that this is
close to one of the properties required to a Kontsevich-Suhov’s
conjectural measure on loop space.
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Thank you for your attention.
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