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Unbiased Estimator and Some Integral Equations

Isamu DÔKU

Department of Mathematics, Saitama University
e-mail: idoku@mail.saitama-u.ac.jp

Let D0 := R3\{0}, and we put R+ := [0,∞). For every α, β ∈ C3, we use
the symbol α · β for the inner product, and we define ex := x/|x| for every
x ∈ D0. We consider the following deterministic nonlinear integral equation:

eλt|x|
2
u(t, x) = u0(x) +

λ

2

∫ t

0

ds eλs|x|
2

∫
p(s, x, y; u)n(x, y)dy

+
λ

2

∫ t

0

eλs|x|
2
f(s, x)ds, for ∀(t, x) ∈ R+ ×D0. (1)

Here u ≡ u(t, x) is an unknown function : R+ × D0 → C3, λ > 0, and
u0 : D0 → C3 is the initial data such that u(t, x)|t=0 = u0(x). Moreover,
f(t, x) : R+ × D0 → C3 is a given function satisfying f(t, x)/|x|2 =: f̃ ∈
L1(R+) for each x ∈ D0. The integrand p in (1) is given by

p(t, x, y; u) = u(t, y) · ex{u(t, x− y)− ex(u(t, x− y) · ex)}. (2)

Suppose that the integral kernel n(x, y) is bounded and measurable with
respect to dx × dy. On the other hand, we consider a Markov kernel K
described below. For every z ∈ D0, Kz(dx, dy) lies in the space P(D0 ×D0)
of all probability measures on a product space D0 × D0. When the kernel
k is given by k(x, y) = i|x|−2n(x, y), then we define Kz as a Markov kernel
satisfying that for any positive measurable function h = h(x, y) on D0 ×D0,

∫∫
h(x, y)Kz(dx, dy) =

∫
h(x, z − x)k(x, z)dx. (3)

We shall start with defining of a branching Markov chain {ξn}n. First of all,
we put

D :=
∞⊕

n=0

Dn
0 , D0

0 = ∆ /∈ Dn
0 (n = 1, 2, . . . ),
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and let D0 be equipped with the σ-field G generated by a natural σ-algebra
B(D0) and a single-point set {∆}, where ∆ is called an absorbing state in
the theory of Markov processes. For each x ∈ D0 we define a probability
measure p(x, dy) ∈ P(D, G) such that pn(x,A) := p(x,A) for A ⊂ Dn

0 and
g(x) = p(x, {∆}) as a measurable function. Here p(x, dy) is called a transition
function of Markov chain {ξn}. We assume that for every A ∈ G, p(x,A) is
a B(D0)-measurable function.

Theorem. Let {ξk}∞k=0 be a Markov chain with a phase space (D,G) and
with a transition function p(x, dy). Then there exist a suitable sequence {τm}
of random variables and a proper functional M∗(ξ) = M∗(τm, {ξk}) of {τm}
and {ξk} such that a random quantity ζ = M∗(ξ) is a realizable unbiased
estimator of the solutions to the integral equation (1), i.e., in other words,
the function

u(t, x) := Êt,x[M
∗(ξ)] = Êt,x[M

∗(τ, {ξk})] (4)

satisfies the equation (1), where Êt,x is the expectation with respect to a prob-
ability measure Qt,x on (D,G).

For brevity’s sake we illustrate the typical case by a simple example, to
see what on earth the above-mentioned unbiased estimator ζ = M∗(ξ) is
really like. Let us now consider a simple case of Ξ(ϕp(m)(ξ)) involved with
ϕp(m)(ξ) and ϕp(m′)(ξ) with pivoting ξp(m′′). Actually, ϕp(m)(ξ) and ϕp(m′)(ξ)
are functional (having an explicit form) of Markov chain {ξn}. Then we have
immediately

M∗(ξ) ≡ M∗(τm, {ξn}) = Ξ(ϕp(m)(ξ))

= iα(ξp(m′′))× β(ϕp(m)(ξ), ξp(m′′))× γ(ξp(m′′), ϕp(m′)(ξ))

=
i
∑3

j=1 ϕ
j
k(ξ)ξ

j
k′′√

(ξ1k′′)
2 + (ξ2k′′)

2 + (ξ3k′′)
2
×

{ ∑3
j=1 ξ

j
k′′ϕ

j
k′(ξ)

(ξ1k′′)
2 + (ξ2k′′)

2 + (ξ3k′′)
2
· ξk′′ − ϕk′(ξ)

}

where we put p(m) = k, p(m′) = k′ and p(m′′) = k′′, and both particles with
labels m and m′ belong to the same *-th generation of descendants since we
have |m| = |m′| = * when |m′′| = *− 1.
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Stochastic heat equation arising from a certain branching systems
in random environment

Makoto Nakashima
University of Tsukuba, Graduate School of Pure and Applied Sciences∗

In this talk, we will consider the stochastic heat equations on the line which have been studied for four
decades. Especially, we will construct a non-negative solution to a certain stochastic heat equation by using
a branching systems in random environment.

1 Stochastic heat equation

In this talk, we consider the stochastic heat equations as follows:

∂

∂t
Xt =

1

2
∆Xt(x) + a(Xt(x))Ẇ (t, x), (1.1)

where W is a time-space white noise and a is a continuous function with a(0) = 0.
The study of stochastic heat equation was started around 1970’s. In particular, the existence and the

uniqueness of the strong solution to (1.1) are known if a is Lipschitz continuous [8] et.al.
Also, the existence of the solution to (1.1) are verified for more general a under some initial conditions

[7]. On the other hand, the uniqueness of solutions to (1.1) are very difficult problem attacked by many
mathematicians [4, 3] et. al.

The stochastic heat equations (1.1) appear as some limit process. One of the most famous examples is a
one-dimensional super-Brownian motion which is a measure-valued process arising as a scaling limit of some
critical branching Brownian motion or branching random walks.

2 Super-Brownian motion

Before giving a definition of super-Brownian motion, we recall the branching random walks.∗

Definition 1. Branching random walks are defined as follows:

(1) There are particles at x1, · · · , xMN ∈ Zd at time 0.

(2) The particles at time n choose a nearest neighbor site independently and uniformly, and move there.

(3) Then, each of them independently splits into two particles with probability 1
2 or vanishes with probability

1
2 .

Remark: The total number at time n, Bn, is a critical Galton-Watson process.

We set a measure-valued process {X(N)
t } as follows: For every Borel set A

X(N)
0 (dx) =

1

N

MN∑

i=1

δxi/N1/2(dx),

X(N)
t (A) =

1

N
#{particles locates in N1/2A at time "Nt#}.

Then, we have the following theorem:

∗nakamako@math.tsukuba.ac.jp
∗In this talk, we consider the most simple case.
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Theorem 2. ([9, 1]) If X(N)
0 ⇒ X0 in MF (Rd), then {X(N)

· } weakly converges to a measure valued process
Xt as N → ∞.

Moreover,[2, 6] if d = 1, then Xt is absolutely continuous with respect to the Lebesgue measure for any
t > a.s. and its density Xt(x) is the unique non-negative weak solution to the stochastic heat equation

∂

∂t
Xt(x) =

1

2
∆Xt(x) +

√
Xt(x)Ẇ (t, x), lim

t→0
Xt(x)dx = X0(dx).

3 Main result

We construct a solution to (1.1) with a(u) =
√
u from a certain branching system in random environment.

Theorem 3. ([5]) For any X0 ∈ MF (R), there exists the unique, weak, and non-negative solution to the
stochastic heat equation

∂

∂t
Xt(x) =

1

2
∆Xt(x) +

√
Xt(x) +Xt(x)2Ẇ (t, x), lim

t→∞
Xt(x)dx = X0(dx).

Remark: Mytnik gave a remark on the above construction in his paper.
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Lp Solutions of Backward Stochastic Differential
Equations and their Malliavin Derivatives

Yuki Izumi
Graduate School of Mathematics, Kyushu University

Backward Stochastic Differential Equations

Let (Ω,F , P ) be a complete probability space,W = (Wt)0≤t≤T be an n-dimensional
standard Brownian motion defined on the space, and (Ft)0≤t≤T be the Browinian
filtration augmented by all P -null sets. T > 0 represents a terminal time.

We consider the following d dimensional stochastic differential equation:

−dYt = f(t, Yt, Zt)dt− Z∗
t dWt, YT = ξ,

which is often rewritten in the form:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗
sdWs, 0 ≤ t ≤ T,

where ξ is an FT -measurable random variable which represents a terminal con-
dition, f : [0, T ] × Ω × Rd × Rn×d → Rd with progressive measurablity for each
element in Rd × Rn×d. These type of SDEs are called backward SDEs (BSDEs
for short).

For p > 1, an Lp solution of a BSDE is a pair (Y, Z), composed of (Ft)-adapted
continuous process and (Ft)-progressively measurable process respectively, which
satisfies the BSDE and

E

[
sup

0≤t≤T
|Yt|p

]
+ E

[(∫ T

0

|Zt|2dt
) p

2

]
< ∞.

Lp solutions and their Malliavin derivatives

Under appropriate assumptions on ξ and f , it is known that BSDE with respect
to ξ and f has unique Lp solution.

Then El Karoui, Peng and Quenez [1] showed the Lp (p ≥ 2) solution of
BSDE is differentiable in Malliavin’s sense. In addition, an important property
between Y and Z is given; Zt = DtYt, where Du = d

dt

∣∣
t=u

∇ and ∇ represents the
Malliavin derivative operator.

1



Malliavin derivatives of Wiener functionals take values on Hilbert spaces.
They are specifically Hilbert-Schmidt operators. Therefore it is useful to con-
sider BSDEs on Hilbert spaces when trying to differentiate many times. In this
talk, we deal with BSDEs on Hilbert spaces and introduce some results on higher
order Malliavin differentiability of solutions.
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The parametrix as a stochastic method

Arturo Kohatsu-Higa (Ritsumeikan University)

We will introduce the parametrix as a stochastic method and we will describe possible
applications of these representations in simulation problems.



A NOTE ON CONVERGENCE RATES FOR STABILITY PROBLEMS OF SDES

TAKAHIRO TSUCHIYA

Consider the following sequence of one-dimensional stochastic differential equations

(1) Xn(t) = Xn(0) +
∫ t

0
bn(Xn(s))ds +

∫ t

0
σn(Xn(s))dWs,

and consider the solution X given by

(2) X(t) = X(0) +
∫ t

0
b(X(s))ds +

∫ t

0
σ(X(s))dWs,

where {Ws}s≥0 is a Wiener process and bn : R → R and σn : R → R for n ∈ N are coefficients which tend
to b and σ respectively in some sense, as n → ∞. The convergence of the sequence {Xn}n∈N to X named
as stability problems was introduced by Stroock and Varadhan in [11] to solve the martingale problems
for unbounded coefficients b and σ. On the other hand, the stability approach in the sense of strong to
the continuous diffusion coefficients, typically Hölder continuous of exponent (1

2 + γ) for 0 ≤ γ ≤ 1/2, has
been further developed by Kawabata-Yamada [6]. The study of strong solution for irregular coefficients was
treated by Nakao in [9] and also Zvonkin and Krylov in [7] where σ is bounded below by a positive constant
and is of bounded variation on any compact interval. Then the result of [9] were extended to by Le Gall in
[8], who proved the stability problems on the diffusion coefficients are positive and squared finite quadratic
variation.

In another important development, the “rate” of convergence of the Euler-Maruyama schemes to the
solution of (2) was drawn primarily from the paper Deelstra and Delbaen in [1] and their results has been
considerably generalized by Gyöngy and Rásonyi in [3]: The convergence rate of Euler-Maruyama schemes
with the diffusion coefficients satisfying (1

2 + γ)-Hölder continuous and the suitable drift coefficients in L1 is
bounded by n−γ where 0 < γ ≤ 1/2, however, that is bounded by (log n)−1 in the case where the diffusion
coefficients (1/2)-Hölder continuous, γ = 0.

The result suggests that the rate of convergence may depend also on the modulus continuity of diffusion
coefficients. Therefore the goal of this research is to estimate the strong convergence rate of stability problems.
To be more precious, let us consider the following drift-less stability problems,

Xn(t) − Xn(0) =
∫ t

0
σn(Xn(s))dWs, X(t) − X(0) =

∫ t

0
σ(Xn(s))dWs,

for t ≥ 0 and Xn(0) ≡ X(0).
As a first result, the strong convergence rate is given of the stability problem when the coefficients satisfy

the modulus continuity; σ and σn are
(

1
2 + γ

)
-Hölder continuous and σn converges to σ uniformly. Then,

there exists a positive constant C1 such that

E(|X(t) − Xn(t)|) ≤
{

C1n−γ (0 < γ ≤ 1/2)
C1(log n)−1 (γ = 0).

Since the coefficient may be discontinuous under the following Nakao-Le Gall condition, a typically ex-
ample is Skew Brownian motions [4], it seems to be very interesting to investigate the rate of convergence
of the stability problems under the condition:

Definition 1 (Nakao-Le Gall condition). We say that a real valued function σ satisfies the Nakao-Le Gall
condition and write σ ∈ CNL(ε, f) if σ satisfies the following statements:

1



2 TAKAHIRO TSUCHIYA

(i) There exists a positive real number ε such that

ε ≤ σ(x)

holds for any x in R.
(ii) There exists a monotone increasing function f such that

|σ(x) − σ(y)|2 ≤ |f(x) − f(y)|
holds for every x and y in R.

(iii) In addition, the function f is bounded on R,

‖f‖∞ := sup
x∈R

|f(x)| < ∞.

In this presentation, the strong convergence rate of the Nakao-Le Gall condition will be given as the
local time argument plays an important role to estimate. Thanks to the extended local time expression for
rotation invariant and α-stable processes Z given by Fitzsimmons and Getoor [2], K. Yamada [12], and see
also [10]. Then the result will be extended to the rotation invariant and index α process Z driven stochastic
differential equations;

Xn(t) − Xn(0) =
∫ t

0
σn(Xn(s))dZs, X(t) − X(0) =

∫ t

0
σ(Xn(s))dZs,

for t ≥ 0 and Xn(0) ≡ X(0).
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A central limit theorem for non-symmetric random
walks on crystal lattices

Satoshi Ishiwata (Yamagata University) ∗

This talk is based on a joint work with Hiroshi Kawabi(Okayama Univ.) and Motoko
Kotani (Tohoku Univ.).

A locally finite, connected oriented graph X = (V,E) is called crystal lattice if X is an
abelian covering graph of a finite graph X0 = (V0, E0). We denote by Γ " Zd the covering
transformation group. Our interest is the long time behavior of the transition probability

p(n, x, y) =
∑

(e1,e2,...,en)∈Cx,n

t(en)=y

p(e1)p(e2) · · · p(en)

given by a 1-step transition probability p : E → [0, 1] satisfying
∑

e∈Ex

p(e) = 1, p(e) + p(e) > 0, ∀σ ∈ Γ, p(σe) = p(e).

There are many results of this problem under some various settings. See Spitzer [10],
Lawler [9] and references therein. Our study is motivated by the following local central
limit theorem (LCLT) presented by Sunada [11]:

Theorem 0.1 Suppose that the random walk is irreducible with period K. Then

p(n, x, y) ∼ Kvol(AlbΓ)m(y)

(2πn)d/2
exp

(
−‖Φ(y)− Φ(x)− nρR(γp)‖2

2n

)
,

where m is the (lift of) normalized invariant measure on X0, γp is the homological direc-
tion, ρR is the canonical surjective homomorphism from H1(X0, R) to Γ⊗R, Φ : X → Γ⊗R
is the modified harmonic realization, defined by

∀x ∈ V, ∆Φ(x) :=
∑

e∈Ex

p(e) (Φ(o(x))− Φ(t(e))) = ρR(γp),

and ‖ ·‖ is the Albanese metric on Γ⊗ R, induced by

Γ⊗ R ←−←− H1(X0, R)

+ +
Hom(Γ, R) ↪→ H1(X0, R) " H1(X0).

∗Partially supported by Grant-in-Aid for Young Scientists (B)(No. 21740034), JSPS
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Here H1(X0) is the space of modified harmonic 1-forms difined by

∀x ∈ V0, δω(x) + 〈γp, ω〉 = 0

equipped with a canonical inner product defined by

〈〈ω1, ω2〉〉 =
∑

e∈E0

p(e)ω1(e)ω2(e)m(o(e)) − 〈γp, ω1〉〈γp, ω2〉.

See also .[2], [3], [4], [5], [6], [7], [8], [12].
It is natural to ask the weak convergence of the sequence of law of the probability

measure of the random walk on X. In this talk we give two canonical weak convergences.
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Selfadjoint extensions of a Schrödinger-type operator

Jun Masamune
Tohoku University, GSIS

Let M = (M,g) be a smooth Riemannian manifold without boundary, not necessarily
geodesically complete. We consider a Schrödinger-type operator

L = ∆ + V

where ∆ = div ◦ ∇ is the Laplace-Beltrami operator and V is a real-valued continuous
function on M . By Green’s formula, L is a symmetric operator on the space of smooth
functions with compact support C∞

0 (M) in L2 = L2(M ; dvg), that is,

(Lu, v) = (u,Lv), ∀u, v ∈ C∞
0 (M)

where (u, v) stands for the L2-inner product of u and v. In this talk we will discuss
several problems regarding with selfadjoint extensions of L; in particular, the essential
selfadjointness, i.e., L has unique selfadjoint extension, as well as the Markov uniqueness
by which we mean that there exists unique selfadjoint extension L̂ satisfying the Markov
property:

0 ≤ u ≤ 1 ⇒ 0 ≤ Ttu ≤ 1, ∀t > 0 (1)

where {Tt}t≥0 is the L2-semigroup generated by L̂. Roughly speaking, (1) means that the
system should not increase the energy with time t > 0, and together with an additional
assumption1, {Tt}t≥0 is a transition probability of a Markov process (actually, a Hunt
process) on M due to Fukushima’s theorem.

Therefore, these two problems are to determine the possible physical models in quantum
mechanics and Markov processes respectively, or more precisely, to study the negligibility
of the singular sets of the space by these systems.

Our starting point is M.P. Gaffney [3] proving that ∆ has unique Markov extension
provided M is geodesically complete. This result has been extended to various directions:
P.R. Chernoff [4] and R.S. Strichartz [6] showed the essential self-adjointness of ∆ for
geodesically complete manifolds. See [2, 5, 8, 7, 9] for results on geodesically incomplete
manifolds. Another direction is to study the behavior of V and the geometry of M so that
L is essentially selfadjoint (see, e.g., [1] and the reference within).

1The domain F = Dom(
√
−L) of the energy E satisfies that F ∩C∞(M) is dense in F and C∞(M) with

respect to ‖u‖ =
√

E(u, u) + (u, u) and sup-norm, respectively.



The main discussion of the talk will be devoted to some new results along those lines
for geodesically incomplete manifolds when the singular points enjoy a certain symmetry.
Time permitting, we will also address a recent result for

L = ∆+X + V

where X ∈ Γ(TM) answering the same question but it’s non-symmetric counter part as a
generalization of [10].
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Large time asymptotics for Feynman-Kac
functionals of symmetric stable processes

Masaki Wada (Mathematical Institute, Tohoku University)

September 25, 2014

Let {Xt} be the rotationally invariant α-stable process on Rd with 0 < α < 2 and
denote by (E ,F ) the corresponding Dirichlet form on L2(Rd). We assume α < d,
transience of {Xt} and denote the Green kernel by G(x,y). Let µ be a positive Radon
smooth measure satisfying Green-tightness and define the Schrödinger form E µ by
E µ(u,v) = E (u,v)− 〈u,v〉µ ≡ 〈−L µu,v〉. Denoting by Aµt the positive continuous
additive functional in the Revuz correspondence with µ , we have

∫

Rd
pµ(t,x,y)dy= Ex[exp(Aµt )]. (1)

Here pµ(t,x,y) is the fundamental solution of the equation ∂u/∂ t = L µu. We call the
right hand side of (1) Feynman-Kac functional. In this talk, we consider the large time
asymptotics for Ex[exp(Aµt )]. This is a jointly work with Professor Masayoshi Takeda.

We define the spectral bottom of the time changed process for {Xt} by µ as follows:

λ (µ) = inf{E (u,u) | u ∈ Fe, 〈u,u〉µ = 1},

where Fe is the extended Dirichlet space. Note that λ (µ) represents the smallness of
µ . If λ (µ) > 1, µ is said to be subcritical. Takeda [3] showed that µ is subcritical if
and only if sup

x∈Rd
Ex[exp(Aµ∞)] < ∞. Moreover, if µ is of 0-order finite energy integral,

this condition is also equivalent to the stability of fundamental solution, i.e. pµ(t,x,y)
admits the same two-sided estimates as the transition density function of {Xt} up to
positive multiple constants ([5]).

If λ (µ)< 1, µ is said to be supercritical. The supercriticality of µ is equivalent to

C(µ) :=− inf{E µ(u,u) | u ∈ F , 〈u,u〉= 1}> 0

and this is the principal eigenvalue of L µ . Via Fukushima’s ergodic theorem, Takeda
[4] showed Ex[exp(Aµt )] ∼ c1h(x)exp(C(µ)t) where h(x) is the eigenfunction corre-
sponding to the principal eigenvalue.

If λ (µ) = 1, µ is said to be critical. In this case C(µ) = 0 and the growth of
Ex[exp(Aµt )] is not exponential. Simon [2] and Cranston, Koralov et al. [1] treated the
same problem for Brownian motion. They gave a concrete growth order ofEx[exp(Aµt )]
depending on d for absolutely continuous µ with some additional conditions. For the
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proof, they first gave the asymptotic expansion of the β -order resolventGβ (x,y) as β →
0 using the Hankel functions. The Schrödinger resolvent {Gµ

β} is expressed through

Gβ and the resolvent equation. Since it follows that Ex[exp(A
µ
t )] = 1+

∫ t

0
Pµs µds for

the Schrödinger semigroup {Pµs }, their results follow via Tauberian theorem and the
behavior of Gµ

β µ as β → 0.
In our framework, we impose only compactness on µ and thus need some improve-

ments of their methods. First, we cannot express the resolvent kernel of the α-stable
processes through special functions. The expression of the transition density function
and some calculations enable us to obtain

Gβ (x,y) = G0(x,y)− c1k(β )|x− y|(2α−d)∧0+Eβ (x,y).

Here k(β ) is a function depending on d/α and Eβ (x,y) has smaller order than k(β ).
Secondary, we consider the time changed process by µ for β -killed process of {Xt}
to obtain the representation of Gµ

β µ , since µ is not necessarily absolutely continuous.

The Green operator of this process is given by f →
∫

Rd
Gβ (·,y) f (y)µ(dy), and a com-

pact operator on L2(µ). Thus, we can apply the perturbation theory and conclude that
k(β )Gµ

β µ converges E -weakly as β → 0. Since Pµε admits Green-tight integral kernel,
we can strengthen this convergence to pointwise one and obtain the following result:

Theorem 1. (Takeda-W. 2014)
Suppose {Xt} is the transient, rotationally invariant α-stable process and µ is a critical
measure with compact support. As t → ∞, Feynman-Kac functional satisfies

Ex[exp(Aµt )]∼






c1h0(x)td/α−1 (1< d/α < 2),
c2h0(x)t/ log t (d/α = 2),
c3h0(x)t (d/α > 2),

where h0(x) is the ground state of E µ .
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An Integration by Parts on “Space of
Loops”

Takafumi Amaba!1 and Kazuhiro Yoshikawa!2,
1,2Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga,

525-8577, Japan

We study a probability measure on “space of loops” induced by a
(alternate) Loewner-Kufarev equation

∂gt
∂t

(z) = zg′t(z)
1

2π

∫ 2π

0

eiθ + z

eiθ − z
νt(θ)dθ, g0(z) ≡ z ∈ D0,(1)

where D0 stands for the unit disk in the complex plane and the input
νt is set to be

“νt(θ) = α−1
0 t+

∞∑

k=1

α−1
k

{
Ḃ(k,1)

t cos(kθ) + Ḃ(k,2)
t sin(kθ)

}
”.

Here, (B(k,1)
t , B(k,2)

t ), k ≥ 1 are infinitely many independent two-dimensional
Brownian motions and (αk)k≥0 are positive real numbers. With cal-
culating the right-hand-side in (1), we are motivated to consider the
following SDE, which we call a stochastic Loewner-Kufarev equation:

dgt(z) = zg′t(z)
{
dX0

t +
∞∑

k=1

zkdXk
t

}
, g0(z) ≡ z ∈ D0,(2)

where X0
t = α−1

0 t, Xk
t = α−1

k Zk
t and Zk

t ’s are infinitely many indepen-
dent complex Brownian motions. We need to take αk’s so that the
right-hand-side in (2) converges.

The main result is the following.

Theorem 1. Malliavin’s canonic diffusion “on” Diff+(S1) (see [2]) has
a similar defining equation to a stochastic Loewner-Kufarev equation.
More precisely, let (gt)0≤t≤T be univalent function on D0 satisfying the
equation (2). Then the inverse process g−1

t : gt(D0) → D0 obeys

dg−1
t (z) = −g−1

t (z)
{dt

α0
+

∞∑

k=1

g−1
t (z)k

dZk
t

αk

}
.

Let σt be Malliavin’s canonic diffusion. Then the stochastic process
σt(1) on S1 verifies

dσt(1) = −σt(1)
{γ

2
dt+

∞∑

k=1

−iRe
(
σt(1)kdZ̃k

t

)
√

hk + c
12(k

3 − k)

}
,

!fm-amaba@fc.ritsumei.ac.jp
!ra009059@ed.ritsumei.ac.jp
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2

where γ :=
∑∞

k=1{hk+ c
12(k

3−k)}−1, Z̃k
t := x(k,1)

t −ix(k,2)
t and (x(k,1)

t , x(k,2)
t )

are infinitely many independent two-dimensional Brownian motions.

Existence- and uniqueness- properties of solutions to (2) have not
been established yet. Instead of that, we shall focus on a hierarchy of
(2).

Proposition 2. Let a family of holomorphic gt : D0 → C satisfy the
equation (2). We parametrize gt as

gt(z) = C(t)
(
z + c1(t)z

2 + c2(t)z
3 + c3(t)z

4 + · · ·
)
.

Then we have




dC(t) = C(t)dX0
t ,

dc1(t) = dX1
t + c1(t)dX0

t ,

dcn(t) = dXn
t +

n−1∑

k=1

(k + 1)ck(t)dX
n−k
t + ncn(t)dX

0
t ,

n ≥ 2.

(3)

We notice that the system (3) consists of linear stochastic differen-
tial equations with constant coefficients and hence this system can be
integrated and admits a unique strong solution (C(t), c1(t), c2(t), · · · ).
We call such the sequence a hierarchical solution to (2).

For each c ∈ R, the Kirillov-Neretin polynomials Pn(c1, · · · , cn), n ≥
0 are defined by

∑∞
n=0 Pn(c1, · · · , cn)zn = cz2

12 Sf (z), where Sf (z) is the
Schwarzian derivative of f(z) = f ′(0)(z +

∑∞
k=1 ckz

k+1). Define Ln :=
∂

∂cn
+
∑∞

k=1(k + 1)ck
∂

∂cn+k
for n ≥ 1.

Theorem 3. Let (C(t), c1(t), c2(t), · · · ) be a hierarchical solution to
(2) and set Pn(t) := Pn(c1(t), · · · , cn(t)) for each n ≥ 0. Then for each
polynomial F (c1, c2, · · · ), we have

E
[
(LnF )(c1(t), c2(t), · · · )

]

= E
[
F (c1(t), c2(t), · · · )×




combination of c1(t)

and Neretin polynomials
up to n-th order





︸ ︷︷ ︸
=:divPLn

]

for a.a. t and n ≥ 1. Where the divergence terms may include the
stochastic integrals of (Pk(s))0≤s≤t, k = 1, 2, · · · , n.

For example, with setting α−1
0 = 0 and γk :=

c
12(k

3−k) for simplicity,

it holds that
γ2
α2

divPL2 = P2(t) which is equal to Sgt(0) if gt(z) =

C(t)(z +
∑∞

k=1 ck(t)z
k+1) converges and then, with setting α2 := c

12γ2
(> 0 if c &= 0), the last theorem is stating roughly that

“

∫

Loops

(L2F )(L)P
(
gt(S

1) ∈ dL
)
=

c

12

∫

Loops

F (L)Sφ(0)P
(
gt(S

1) ∈ dL
)
”,
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for any “polynomial function” F (cf. the equations (2.31) and (2.35)
in [1]).
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A PROOF OF Lp–LOGARITHMIC SOBOLEV INEQUALITY VIA

SEVERAL APPROXIMATIONS

YASUHIRO FUJITA (UNIVERSITY OF TOYAMA)

This talk is based on [7].
For a smooth enough function f ≥ 0 on Rn, we define the entropy of
f with respect to the Lebesgue measure by

Ent(f) =

∫
f(x) log f(x)dx−

∫
f(x)dx log

∫
f(x)dx.

In this talk, the integral without its domain is always understood as
the one over Rn, and we interpret that 0 log 0 = 0.

Let p ≥ 1. We denote by W 1,p(Rn) the space of all weakly differen-
tiable functions f on Rn such that f and |Df | (the Euclidean length of
the gradient Df of f) are in Lp(Rn). For f ∈ W 1,p(Rn), the following
Lp–logarithmic Sobolev inequality was shown for p = 2 by [11], p = 1
by [10], and 1 < p < n by [6]:

(1) Ent(|f |p) ≤ n

p

∫
|f(x)|pdx log



Lp

∫
|Df(x)|p dx

∫
|f(x)|p dx



 .

Here,

(2) Lp =






p

n

(
p− 1

e

)p−1

π−p/2



 Γ
(
n
2 + 1

)

Γ
(
n p−1

p + 1
)




p/n

, p > 1,

1

n
π−1/2

[
Γ
(n
2
+ 1

)]1/n
, p = 1.

This is the best possible constant satisfying (1) for 1 ≤ p < n (cf.
[1, 6]).

For a general p > 1, with a deep insight, Gentil [9, Theorem 1.1]
gave inequality (1) by using a hypercontractivity inequality for the
unique viscosity solution to the Cauchy problem of a Hamilton-Jacobi
equation. However, his proof for inequality (1) is valid for a special
class of functions f in W 1,p(Rn).

「確率解析とその周辺」, 2014.10.14–16, 東北大.



Our aim of this talk is to bridge the gap in the proof of [9, Theorem
1.1] and provide a supplementary proof of inequality (1) for all f ∈
W 1,p(Rn) and p > 1. The strategy of our proof is the following:

First, we show (1) for f ∈ W 1,p(Rn) such that

(3) f ∈ C1(Rn), 0 < f ≤ 1 in Rn, and D(log f) is bounded on Rn.

Second, we approximate f ∈ W 1,p(Rn) by a sequence of functions
satisfying (3) by several steps. This is the key point to derive (1).
An important tool is the following Fatou–type inequality: if a family
{fε}0<ε<1 of nonnegative and measurable functions on Rn approximates
a function f in some sense, then

(4) lim inf
ε→0+

∫
fε(x)

p log fε(x)dx ≥
∫

f(x)p log f(x)dx.

Finally, by using these approximations, we show that Lp–logarithmic
Sobolev inequality (1) holds true for all f ∈ W 1,p(Rn) and p > 1.

I express my hearty appreciation to Ivan Gentil for his encourage-
ment.
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Massimiliano Gubinelli (Universite Paris-Dauphine)

Lecture 1: Singular stochastic PDEs and paracontrolled distributions

Non-linear evolution problems perturbed by singular noise sources arise naturally as scal-
ing limits of certain microscopic evolutions or homogenisation problems. The parabolic
anderson model, the Kardar-Parisi-Zhang equation and the stochastic quantization equa-
tion are examples of such systems. Solving (or even giving a meaning to) these equations
require a detailed understanding of the propagation of the stochastic perturbations via
the non-linear evolution. I will explain how ideas and tools from harmonic analysis can
be useful in this analysis and in the related problem of studying the convergence of the
microscopic models to their scaling limits.

Lecture 2: Regularisation by noise in PDEs

It can happen that randomly perturbing a PDE can lead to better properties for the
solutions. Random perturbation have usually sample paths which are very irregular and
it seems that is this irregularity to play a key role in the regularisation effect. I will intro-
duce a deterministic and quantitative notion of irregularity for functions of one variable
and show how it can be used to analyse the behaviour of linear and non-linear PDEs
modulated by such irregular perturbations. The following situations will be considered:
linear transport equations, non-linear Schrödinger equations and the KdV equation.



Stochastic renormalization in QFT

Fumio Hiroshima (Kyushu University)

This is a joint work with M. Gubinelli and J. Lorinczi [JFA 2014]. By using a stochastic
method we renormalize UV cutoff imposed on a scalar quantum field model. This is an
alternative of the method by Edward Nelson who renormalized UV cutoff by a functional
analysis method. Physical and mathematical interpretations of the renormalized term is
given and some application are discussed.



Exact convergence rate of the Wong-Zakai approximation to
RDEs driven by Gaussian rough paths

Nobuaki Naganuma ∗

Abstract

We consider a solution to a stochastic differential equation (SDE) driven by a Gaussian
process in the sense of rough differential equation (RDE) and the Wong-Zakai approximation
to the solution. We give an upper bound of the error of the Wong-Zakai approximation. We
also show that the upper bound is optimal in a particular case.

1 Introduction

The rough path theory originated from Lyons gives a framework that allows us to deal with differ-
ential equations driven by rough signals rigorously. After Lyons’ work, many researchers apply it to
SDEs. In context of SDEs, the rough path theory plays a crucial role in order to study differential
equations with rougher driving signals than Brownian motion; for example, fractional Brownian
motions and more general Gaussian processes.

A key step to consider SDEs in the rough path theory is to construct rough paths associated
to the drivers. Coutin-Qian showed an existence of a rough path associated to a Gaussian process
under the condition so-called the Coutin-Qian condition (Defintion 1) and Friz-Victoir proved an
existence under more mild conditions on its covariance function. Once we construct the rough paths
associated to the drivers of SDEs, we obtain solutions to SDEs automatically with help of the rough
path theory. Moreover, we can obtain a pathwise estimate for the difference of two solutions to
SDEs which have different drivers; by using the local Lipschitz continuity of the Itô-Lyons map, we
see that the difference of the solutions inherit from the difference of the drivers. However, we need
to make an effort to obtain a probabilistic error bounds. Since the Lipschitz constant appeared in
the Itô-Lyons map is a random variable, we need to consider integrability of it. The integrability
is proved by [CLL13, FR13, BFRS13].

In this talk, combing the integrability of the Lipschitz constant stated above and the estimates
of two rough paths (Theorem 2), we obtain the exact convergence rates of the approximations to
SDE (Theorem 3).

2 Main results

Let X = (X1, . . . , Xd) be a continuous, centered d-dimensional Gaussian process with independent
and identically distributed components. We assume that X satisfies the following the Coutin-Qian
condition:

∗Mathematical Institute, Tohoku University. E-mail: sb1d701@math.tohoku.ac.jp
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Definition 1. We say that X satisfies the Coutin-Qian conditions for 0 < λ< 1 if there exists a
positive constant Cλ such that

E
[
(Xα

t −Xα
s )

2
]
≤ Cλ|t− s|2λ for any 0 < s, t < 1,

∣∣E
[
(Xα

s+ε −Xα
s )(X

α
t+ε −Xα

t )
]∣∣ ≤ Cλ|t− s|2λ−2ε2 for any 0 < ε < |t− s|.

We define the m-th dyadic polygonal approximation X(m) to X by

X(m)t = (Xτm
k

−Xτm
k−1

)2m(t− τmk−1) +Xτm
k−1

for τmk−1 ≤ t ≤ τmk , where τmk = k2−m. Denote by X(m) the natural rough path associated to
X(m). It is known that there exists a limit rough path X in (GΩp(Rd), ρp-var) under the Coutin-
Qian condition for 1/4 < λ ≤ 1/2 and λp > 1. Here GΩp(Rd) is the space of geometric rough paths
and ρp-var is the (inhomogeneous) metric which is defined by

ρp-var(x, x̃) = max
1≤%≤#p$

ρ(%)p-var(x, x̃),

ρ(%)p-var(x, x̃) = sup
0=τ0<τ1<···<τk=1

(
k∑

l=1

|x%
τl−1τl

− x̃%
τl−1τl

|p/%(Rd)⊗!

)%/p

.

Under this setting, we obtain the following:

Theorem 2. Assume that X satisfies the Coutin-Qian condition for 1/3 < λ< 1/2. Then

E[|ρp-var(X,X(m))|r]1/r ≤ C2−m(2λ−1/2)

for any r ≥ 1 and p > 1/(1/2− λ).

Theorem 3. Let σ ∈ C∞
bdd(R

e;Rd ⊗Re). Assume that X satisfies the Coutin-Qian condition for
1/3 < λ < 1/2. Consider the solutions to SDEs

{
dYt = σ(Yt) dXt,

Y0 = y0 ∈ Re,

{
dY (m)t = σ(Y (m)t) dX(m)t,

Y (m)0 = Y0 ∈ Re.

Then, for any r ≥ 1, there exists a positive constant C independent of m such that satisfy

E

[(
sup

0≤t≤1
|Yt − Y (m)t|

)r]1/r
≤ C2−m(2λ−1/2).
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Short time kernel asymptotics for rough differential equation
driven by fractional Brownian motion

Yuzuru Inahama (Nagoya University)

Abstract: We study a stochastic differential equation in the sense of rough path theory driven by frac-
tional Brownian rough path with Hurst parameter H (1/3 < H ≤ 1/2) under the ellipticity assumption
at the starting point. In such a case, the law of the solution at a fixed time has a kernel, i.e., a density
function with respect to Lebesgue measure. (See [1]). In this paper we prove a short time off-diagonal
asymptotic expansion of the kernel under mild additional assumptions. Our main tool is Watanabe’s
distributional Malliavin calculus developped in [2]. Unlike some other works on asymptotics for SDEs
driven by fBm, our RDE (1) has a drift term. This makes the asymptotic expansion quite comlicated.
Note also that when H = 1/2, SDE (1) is just a Stratonovich SDE driven by the usual Brownian motion.
Therefore, our result can be regards as a generaliztion of Watanabe [2].

Let (wt)t≥0 = (w1
t , . . . , wd

t )t≥0 be the d-dimensional fractional Brownian motion (fBm) with Hurst
parameter H ∈ (1/3, 1/2]. Let Vi : Rn → Rn be C∞

b , that is, Vi is a bounded smooth function with
bounded derivatives of all order (0 ≤ i ≤ d). We consider the following (random) rough differential
equation (RDE) driven by fractional Brownian rough path, i.e., the natural lift of fBm (wt);

dyt =
d∑

i=1

Vi(yt)dwi
t + V0(yt)dt with y0 = a ∈ Rn. (1)

We will sometimes write yt = yt(a) etc. to make explicit the dependence on a.
First, we assume the ellipticity of the coefficient of (1) at the starting point a ∈ Rn.

(A1): The set of vectors {V1(a), . . . , Vd(a)} linearly spans Rn.

Under Assumption (A1), the law of the solution yt has a density pt(a, a′) with respect to the Lebesgue
measure da′ on Rn for any t > 0. Let H = HH be the Cameron-Martin space of fBm (wt). For γ ∈ H,
we denote by φ0

t = φ0
t (γ) be the solution of the following Young ODE;

dφ0
t =

d∑

i=1

Vi(φ0
t )dγi

t with φ0
0 = a ∈ Rn.

Set, for a $= a′,
Ka′

a = {γ ∈ H | φ0
1(γ) = a′}.

If we assume (A1) for all a, this set Ka′

a is not empty. If Ka′

a is not empty, it is a Hilbert submanifold
of H. It is known that inf{‖γ‖H | γ ∈ Ka′

a } = min{‖γ‖H | γ ∈ Ka′

a }. Now we introduce the following
assumption;

(A2): γ̄ ∈ Ka′

a which minimizes H-norm exists uniquely.

In the sequel, γ̄ denotes the minimizer in Assumption (A2). We also assume that the Hessian of ‖ · ‖2
H/2

is not so degenerate at γ̄ in the following sense.

(A3): At γ̄, the Hessian of the functional Ka′

a & γ '→ ‖γ‖2
H/2 is strictly larger than IdHH /2 in the form

sense. More precisely, If (−ε0, ε0) & u '→ f(u) ∈ Ka′

a is a smooth curve in Ka′

a such that f(0) = γ̄ and
f ′(0) $= 0, then (d/du)2|u=0‖f(u)‖2

H/2 > 0.



Now,we introduce several index sets for the exponent of the small parameter ε := tH > 0, which will
be used in the asymptotic expansion. Unlike in many preceding papers, index sets in this paper are not
(a constant multiple of) N = {0, 1, 2, . . .} and are quite complicated.

Set Λ1 = {n1 + n2
H | n1, n2 ∈ N}. We denote by 0 = κ0 < κ1 < κ2 < · · · all the elements of Λ1

in increasing order. Several smallest elements are explicitly given as follows; κ1 = 1, κ2 = 2, κ3 =
1
H , κ4 = 3, κ5 = 1 + 1

H , . . . As usual, using the scale invariance (i.e., self-similarity) of fBm, we will
study the scaled version of (1). From its explicit form, one can easily see why Λ1 appears.

We also set Λ2 = {κ−1 | κ ∈ Λ1 \{0}} = {0, 1, 1
H −1, 2 1

H , 3 . . .} and Λ′
2 = {κ−2 | κ ∈ Λ1 \{0, 1}} =

{0, 1
H − 2, 1, 1

H − 1, 2, . . .}. Next we set

Λ3 = {a1 + a2 + · · · + am | m ∈ N+ and a1, . . . , am ∈ Λ2}.

In the sequel, {0 = ν0 < ν1 < ν2 < · · · } stands for all the elements of Λ3 in increasing order. Similarly,

Λ′
3 = {a1 + a2 + · · · + am | m ∈ N+ and a1, . . . , am ∈ Λ′

2}.

In the sequel, {0 = ρ0 < ρ1 < ρ2 < · · · } stands for all the elements of Λ′
3 in increasing order. Finally,

Λ4 = Λ3 +Λ′
3 = {ν + ρ | ν ∈ Λ3, ρ ∈ Λ′

3}. We denote by {0 = λ0 < λ1 < λ2 < · · · } all the elements of Λ4

in increasing order.

Below we state two main results of ours, which are basically analogous to the corresponding ones in
Watanabe [2]. However, there are some differences. First, the exponents on the shoulder of t are not (a
constant multiple of) natural numbers. Second, cancellation of ”odd terms” as in p. 20 and p. 34, [2]
does not happen in general in our case. (If the drift term in RDE (1) is zero or if H = 1/2, then this
kind of cancellation takes place).

The following is a short time asymptotic expansion of the diagonal of the kernel function. This is
much easier than the off-diagonal case.

Theorem 1 Assume (A1). Then, the diagonal of the kernel p(t, a, a) admits the following asymptotics
as t ↘ 0;

p(t, a, a) ∼ 1
tnH

(
c0 + cν1t

ν1H + cν2t
ν2H + · · ·

)

for certain real constants cνj (j = 0, 1, 2, . . .). Here, {0 = ν0 < ν1 < ν2 < · · · } are all the elements of Λ3

in increasing order.

We also have off-diagonal short time asymptotics of the kernel function. This is our main result.

Theorem 2 Assume (A1)–(A3). Then, we have the following asymptotic expansion as t ↘ 0;

p(t, a, a′) ∼ exp
(
−‖γ̄‖2

H
2t2H

) 1
tnH

{
cλ0 + cλ1t

λ1H + cλ2t
λ2H + · · ·

}

for certain real constants cλj (j = 0, 1, 2, . . .). Here, {0 = λ0 < λ1 < λ2 < · · · } are all the elements of
Λ4 in increasing order.
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Integration by parts formulas concerning maxima of some SDEs with
applications

Tomonori Nakatsu (Ritsumeikan University)

1 Introduction

In this talk, firstly, we shall deal with the following one-dimensional stochastic differential equation (SDE),

Xt = x0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (1)

where b, σ : [0,∞)×R → R are measurable functions and {Wt, t ∈ [0,∞)} denotes a one-dimensional standard
Brownian motion defined on a probability space (Ω,F , P ). We will consider discrete time maximum and con-
tinuous time maximum which are defined byMn

T := max{Xt1 , · · · , Xtn} and MT := max0≤t≤T Xt, respectively,
where the time interval [0, T ] and the time partition 0 ≤ t1 < · · · < tn = T , n ≥ 2 are fixed.

Secondly, we will deal with the following d-dimensional SDE,

Zi
t = zi0 +

∫ t

0
V i
0 (Zs)ds+

d∑

j=1

∫ t

0
V i
j (Zs) ◦ dW j

s , 1 ≤ i ≤ d,

where V i
j : Rd → R, 0 ≤ j ≤ d, 1 ≤ i ≤ d are measurable functions and ◦dW j denotes the Stratonovich integral

with respect to a d-dimensional standard Brownian motion {Wt = (W 1
t , · · · ,W d

t ), t ∈ [0,∞)} defined on a
probability space (Ω′,F ′, P ′). For this d-dimensional SDE, we shall consider the random variable defined by
M̂T := max{Z1

T , · · · , Zd
T }, where T > 0 is fixed.

In this talk, we say that an integration by parts (IBP) formula for random variables F and G holds if there
exists a random variable H(F ;G) such that EP [ϕ′(F )G] = EP [ϕ(F )H(F ;G)] holds for any ϕ in a class of C1

functions, where EP [·] denotes the expectation with respect to a probability measure P . The IBP formula is
usually used to obtain expressions and upper bounds of the probability density function of F by taking G = 1.
Meanwhile, in finance, IBP formulas play an important role in order to compute the risks of financial products,
called greeks (see [1], for example).

Our goal is to prove IBP formulas for Mn
T , MT and M̂T , in addition, to obtain the expressions and upper

bounds of their probability density functions by means of the IBP formulas.

2 Main results

Assumption (A)

(A1) For t ∈ [0,∞), b(t, ·), σ(t, ·) ∈ C2
b (R;R). Furthermore, all constants which bound the derivatives of b(t, ·)

and σ(t, ·) do not depend on t.

(A2) There exists c > 0 such that

|σ(t, x)| ≥ c

holds, for any x ∈ R and t ∈ [0,∞).

Theorem 1. Assume (A). Let G ∈ D1,∞ and assume t1 > 0. Then there exists a random variable Hn
T (G)

such that Hn
T (G) belongs to Lp(Ω,F , P ) for any p ≥ 1, and

EP [ϕ′(Mn
T )G] = EP [ϕ(Mn

T )H
n
T (G)] (2)

holds for any ϕ ∈ C1
b (R;R).
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Remark 1. In the case that t1 = 0, (2) in Theorem 1 is valid for any ϕ ∈ C1
b (R;R) whose support is included

in (x0,∞).

Assumption (A)’
We assume that the diffusion coefficient of (1) is of the form σ(t, x) = σ1(t)σ2(x) and the following assump-

tion.

(A1)’ For t ∈ [0,∞), b(t, ·) ∈ C2
b (R;R). Furthermore, all constants which bound the derivatives of b(t, ·) do

not depend on t.

(A2)’ σ1(·) ∈ C0
b ([0,∞);R) and there exists c1 > 0 such that |σ1(t)| ≥ c1 for any t ∈ [0,∞).

(A3)’ σ2(·) ∈ C3
b (R;R+)(respectively, C3

b (R;R−)), x $→ σ2(x) is increasing (respectively, decreasing) and there
exists c2 > 0 such that |σ2(x)| ≥ c2 for any x ∈ R.

Theorem 2. Assume (A)’. Let G ∈ D1,∞ and a0 > x0 be fixed arbitrarily. Then there exists a random variable
HT (G, a0) such that HT (G, a0) belongs to Lp(Ω,F , P ) for any p ≥ 1, and

EP [ϕ′(MT )G] = EP [ϕ(MT )HT (G, a0)]

holds for any ϕ ∈ C1
b (R;R) whose support is included in (a0,∞).

Define

a(x) := V V T (x),

for x ∈ Rd, where V T is the transpose matrix for V .
Assumption (B)

(B1) For each 1 ≤ i, j ≤ d, V i
j (·) ∈ C2

b (Rd;R).

(B2) There exists c > 0 such that

〈ξ, a(x)ξ〉 ≥ c|ξ|2,

holds for any x, ξ ∈ Rd.

(B3) Vector fields V1, · · · , Vd are commutative, that is

[Vi, Vj ](x) = [Vj , Vi](x), 1 ≤ i, j ≤ d

hold for any x ∈ Rd, where we have defined the Lie bracket by [Vi, Vj ](x) := ∇VjVi(x)−∇ViVj(x).

(B4) For each 1 ≤ i, j ≤ d, (V −1)ij(·) ∈ C1
b (Rd;R).

(B5) For each 1 ≤ i ≤ d, V i
0 (·) ∈ C1

b (Rd;R).

Theorem 3. Assume (B). Then there exists a random variable ĤT such that ĤT belongs to Lp(Ω′,F ′, P ′) for
any p ≥ 1, and

EP ′
[ϕ′(M̂T )] = EP ′

[ϕ(M̂T )ĤT ]

holds for any ϕ ∈ C1
b (R;R).
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Identification of noncausal functions from the stochastic Fourier
coefficients without the aid of a Brownian motion

Hideaki UEMURA (Aichi University of Education)

Let f(t, ω) be a random function on [0, 1] × Ω and {en(t)} be a CONS in L2([0, 1]; C).

The system {
∫ 1

0 f(t, ω)en(t)dWt} is called the stochastic Fourier coefficients (SFCs in

abbr.) of f(t, ω). It is of course these stochastic integrals should be defined adequately.

Let us consider whether f(t, ω) is identified from SFCs of f(t, ω).

Let en(t) = e2πint, n ∈ Z. S.Ogawa [1], S.Ogawa and I [2,3] have studied this problem in

the framework of the theory of the Skorokhod integral with the aid of a Brownian motion.

Recently, however, S. Ogawa [4] obtained the affirmative answer without the aid of a

Brownian motion from the stochastic Fourier transform if f(t, ω) is a nonnegative causal

function. In this talk we will develop his method to the case where f(t, ω) is noncausal.

In this talk we assume the following conditions.

• f(t, ω) is differentiable with respect to t for almost all ω,

•
∫ 1

0

f(t, ω)dt ∈ L2(Ω, dP ), f ′(t, ω)
(
=

∂

∂t
f(t, ω)

)
∈ L2([0, 1] × Ω, dtdP ),

• en(t) = e2πint, n ∈ Z.

We define the stochastic Fourier coefficients through the Ogawa integral. We use the

symbol d∗Wt for Ogawa integral. We remark that f(t, ω) under our conditions is Ogawa

integrable and satisfies
∫ 1

0

f(t, ω)d∗Wt = f(1, ω)W1 −
∫ 1

0

Wtf
′(t, ω)dt. (1)

We denote the SFC
∫ 1

0 f(t, ω)en(t)d∗Wt by f̃n.

Proposition 1. {f̃n, n ∈ Z} is uniformly bounded in L1(dP ).

Since it holds that

lim
N.M→∞

E



 sup
0!t!1

∣∣∣∣∣∣

∑

n%=0,|n|!N

1

−4π2n2
f̃nen(t) −

∑

−4π2n%=0,|n|!M

1

−4π2n2
f̃nen(t)

∣∣∣∣∣∣



 = 0,

Proposition 2. There exists S(t)(= S(t, ω)) ∈ C([0, 1]) a.s. such that

lim
N→∞

E



 sup
0!t!1

∣∣∣∣∣∣

∑

n%=0,|n|!N

1

−4π2n2
f̃nen(t) − S(t)

∣∣∣∣∣∣



 = 0

1



We call S(t) the {(−4π2n2)−1}-stochastic Fourier transform of {f̂n}.
From (1) and the integration by parts formula we have

S(t) = −1

2

(
f(1, ω)W1 −

∫ 1

0

Wtf
′(t, ω)dt

)(
1

6
− t + t2

)

−
(∫ 1

0

(∫ t

0

Wsf
′(s, ω)ds

)
dt −

∫ 1

0

Wtf(t, ω)dt

)(
1

2
− t

)

−
(∫ t

0

∫ s

0

Wuf
′(u, ω)duds −

∫ 1

0

∫ t

0

∫ s

0

Wuf
′(u, ω)dudsdt

)

+

(∫ t

0

Wsf(s, ω)ds −
∫ 1

0

∫ t

0

Wsf(s, ω)dsdt

)

for all t ∈ (0, 1) almost surely. Since the right hand side above is differentiable in t ∈ (0, 1),

so is S(t) and we have

S ′(t) = −1

2

(
f(1, ω)W1 −

∫ 1

0

Wtf
′(t, ω)dt

)
(−1 + 2t)

+

(∫ 1

0

(∫ t

0

Wsf
′(s, ω)ds

)
dt −

∫ 1

0

Wtf(t, ω)dt

)

−
∫ t

0

Wuf
′(u, ω)du + Wtf(t, ω)

if t ∈ (0, 1). Thus it holds that for all fixed s ∈ (0, 1)

lim sup
t↓s

S ′(t) − S ′(s)√
2(t − s) log log 1

t−s

= lim sup
t↓s

Wtf(t, ω) − Wsf(s, ω)√
2(t − s) log log 1

t−s

= f(s, ω) a.s. (2)

We note that the set on which (2) fails depends on s. Set S ⊂ (0, 1) be a countable dense

subset, then we have

Theorem 1.

lim sup
t↓s

S ′(t) − S ′(s)√
2(t − s) log log 1

t−s

= f(s, ω)

for all s ∈ S almost surely. If s $∈ S, then f(s, ω) = limt→s,t∈S f(t, ω) holds.
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DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH PATHS:
AN APPROACH VIA FRACTIONAL CALCULUS

YU ITO

In this talk, I will consider differential equations driven by β-Hölder rough paths with β ∈
(1/3, 1/2]. First, on the basis of fractional calculus, I will introduce an integral of controlled
paths along the rough paths (Eq. (2)). This can be regarded as an alternative approach to the
integration introduced by M. Gubinelli [1]. Then, combining Eqs. (1) and (2), the solution
of the differential equations will be defined by the same way introduced in [1]. Finally, as
the main results of this talk, I will report the existence, uniqueness and continuity of the
solution of the differential equations driven by geometric β-Hölder rough paths.
In the following, I will introduce some basic concepts which will be used in this talk.

Notation. Let V and W be finite-dimensional normed spaces. We use L(V,W ) to denote
the set of all linear maps from V to W . Let T denote a positive constant and ∆T denote
the simplex {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ T}. We use Cλ

1 (V ) to denote the space of all V -valued
λ-Hölder continuous functions on the interval [0, T ]. We use C2(V ) to denote the space of
all V -valued continuous functions on ∆T . Furthermore, for Ψ ∈ C2(V ) and µ > 0, we set

|||Ψ|||µ := sup
0≤s<t≤T

‖Ψs,t‖V
(t− s)µ

and Cµ
2 (V ) := {Ψ ∈ C2(V ) : |||Ψ|||µ < ∞}.

Rough paths. Let β ∈ (1/3, 1/2]. We say that a continuous map X = (X1, X2) from ∆T

to Rd ⊕ (Rd ⊗ Rd) is a β-Hölder rough path in Rd if X satisfies the following properties:

(1) for each s, t, u ∈ [0, T ] with s ≤ u ≤ t,

X1
s,t = X1

s,u +X1
u,t and X2

s,t = X2
s,u +X1

s,u ⊗X1
u,t +X2

u,t;

(2) X1 ∈ Cβ
2 (Rd) and X2 ∈ C2β

2 (Rd ⊗ Rd).

The space of all β-Hölder rough paths in Rd is denoted by Ωβ(Rd), which is a complete
metric space whose distance is

dβ(X, X̃) := |||X1 − X̃1|||β + |||X2 − X̃2|||2β

for X = (X1, X2), X̃ = (X̃1, X̃2) ∈ Ωβ(Rd). Let x ∈ C1
1(Rd). We set

X1
s,t := xt − xs and X2

s,t :=

∫ t

s

(xu − xs)⊗ dxu

for (s, t) ∈ ∆T . Then we see that X = (X1, X2) is a β-Hölder rough paths in Rd. This is
called smooth rough path or the step-2 signature of x. The elements in the closure of the
set of all smooth rough paths with respect to the distance dβ are called geometric β-Hölder
rough paths. The spaces of all smooth rough paths and geometric β-Hölder rough paths in
Rd are denoted by SΩβ(Rd) and GΩβ(Rd), respectively.



Controlled paths. LetX = (X1, X2) ∈ Ωβ(Rd). We say that a pair (Y, Y ′) is an Re-valued
controlled path based on X if (Y, Y ′) satisfies the following properties:

(1) Y ∈ Cβ
1 (Re) and Y ′ ∈ Cβ

1 (L(Rd,Re));
(2) RY ∈ C2β

2 (Re), where RY
s,t := Yt − Ys − Y ′

sX
1
s,t for (s, t) ∈ ∆T .

The space of all Re-valued controlled paths based on X is denoted by Qβ
X(Re), which is a

Banach space whose norm is

‖(Y, Y ′)‖X,β := |Y0|+ |Y ′
0 |+ |||RY |||2β + |||δY ′|||β, (Y, Y ′) ∈ Qβ

X(Re).

Here δY ′
s,t := Y ′

t − Y ′
s for (s, t) ∈ ∆T . Let f be an L(Rd,Re)-valued continuously Fréchet

differentiable function on Re whose derivative ∇f is Lipschitz continuous on Re. We set

Zt := f(Yt) and Z ′
t := ∇f(Yt)Y

′
t (1)

for t ∈ [0, T ]. Then we see that (Z,Z ′) belongs to Qβ
X(L(Rd,Re)).

Integration of controlled paths via fractional calculus. Let Ψ ∈ Cλ
2 (V ) with 0 < λ ≤

1. For α ∈ (0, λ), s ∈ [0, T ) and t ∈ (0, T ], we define Dα
s+Ψ and Dα

t−Ψ as Dα
s+Ψ(s) := 0,

Dα
s+Ψ(u) :=

1

Γ(1− α)

(
Ψs,u

(u− s)α
+ α

∫ u

s

Ψv,u

(u− v)α+1
dv

)
for u ∈ (s, T ]

and Dα
t−Ψ(t) := 0,

Dα
t−Ψ(r) :=

(−1)1+α

Γ(1− α)

(
Ψr,t

(t− r)α
+ α

∫ t

r

Ψr,v

(v − r)α+1
dv

)
for r ∈ [0, t),

where Γ is the Euler gamma function. If Ψ is of the form Ψs,t = ψt−ψs for some ψ ∈ Cλ
1 (V ),

then, from the definition, these functions coincide with the Weyl–Marchaud fractional
derivatives of ψ of order α. Moreover, for X = (X1, X2) ∈ Ωβ(Rd), (Z,Z ′) ∈ Qβ

X(L(Rd,Re))
and γ ∈ ((1− β)/2, β), an Re-valued function Iγ(X,Z) on ∆T is defined by

Iγ(X,Z)s,t := ZsX
1
s,t + Z ′

sX
2
s,t + (−1)1−γ

∫ t

s

D1−γ
s+ RZ(u)R(1,γ)

t− X(u) du

+ (−1)1−2γ

∫ t

s

D1−2γ
s+ δZ ′(u)R(2,γ)

t− X(u) du (2)

for (s, t) ∈ ∆T . Here δZ ′
s,t := Z ′

t − Z ′
s, R

(1,γ)
t− X(u) := Dγ

t−X
1(u) and

R(2,γ)
t− X(u) := D2γ

t−X
2(u) +

(−1)γγ

Γ(1− γ)

∫ t

u

X1
u,v ⊗R(1,γ)

t− X(v)

(v − u)γ+1
dv.

We refer to [2] for the details of Iγ(X,Z) and the generalization for any β ∈ (0, 1].
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This is a joint work with Anne de Bouard and Romain Poncet. The following nonlinear
Schrödinger equation,

i∂tu = − !2
2M

∆u+ |x|2u+ λ|u|2u, t ≥ 0, x ∈ Rd, (1)

called Gross-Pitaevskii equation, was initially used as a model equation to describe mag-
netically trapped Bose gas. Bose gas is described by u, the wave function of the con-
densate, ! is Planck’s constant, M is the atomic mass of atoms in the condensate. The
sign of λ is related to the sign of the atomic scattering length, which may be positive or
negative.

We are interested in the influence of noise in the Gross-Pitaevskii equation (1) with a
stochastic perturbation of the following form.

i∂tu = − !2
2M

∆u+ |x|2u+ λ|u|2u+ ε|x|2uξ̇(t), t ≥ 0, x ∈ Rd, (2)

where ξ̇ is a white noise in time with correlation function E(ξ̇(t)ξ̇(s)) = δ0(t− s). Here, δ0
denotes the Dirac measure at the origin, and ε > 0. The product arising in the right hand
side is interpreted in the Stratonovich sense, since the noise here naturally arises as the
limit of processes with nonzero correlation length. We moreover assume that the noise is
real valued. This model is proposed in [1], possibly with the addition of a damping term,
to describe Bose-Einstein condensate wave function in an all-optical far-off resonance laser
trap. In this model, the term ξ̇(t) represents the deviations of the laser intensity around
its mean value. It is argued in [1] that some fluctuations of the laser intensity are observed
in this case, and that one should take into account stochasticity in the dynamical behavior
of the condensate in real situations.

From the point of view of nonlinear waves, the interesting phenomena is that the Gross-
Pitaevskii equation, similarly to other nonlinear dispersive equations, supports various
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types of solitary wave solutions. In the two-dimensional setting in particular, there are
vortex solutions of the form

u(t, r, θ) = e−iµteimθψ(r), (3)

where r, θ are polar coordinates, m is the vortex degree, µ is the chemical potential and
ψ(r) is the radial non-negative vortex profile. Stability of vortex solutions to diverse forms
of nonlinear Schrödinger equations has drawn much attention in recent years.

In this talk, we introduce some results on the influence of random perturbations on the
propagation of deterministic vortex solutions (3). Because of the presence of noise, a stable
vortex would not persist in its form for all time. Thus an interesting question is how long
the stable vortex can persist, compared to the noise strength ε. We theoretically prove that
up to times of the order of ε−2, the solution of (2) having the same symmetry properties
as the vortex, decomposes into the sum of a randomly modulated vortex solution and a
small remainder, and we derive the equations for the modulation parameter. In addition,
we show that the first order of the remainder, as ε goes to zero, converges to a Gaussian
process. Finally, some numerical simulations on the dynamics of the vortex solution in
the presence of noise are presented.
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