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1 Introduction

The fourth moment theorem was originally introduced by Nualart and Peccati [11]. The theorem gives

some equivalent conditions for a sequence of random variables belonging to a level of Wiener chaos to

convergent to the standard normal distribution. The most surprising part of the theorem is that; if

the variances of the sequence converge to 1, then the convergence to the standard normal distribution

is equivalent to the convergence of the fourth moments of the sequence to 3. After that, Nualart

and Ortiz-Latorre [10] gave another equivalent condition and made a clearer proof in their paper.

Stimulated by Nualart and Ortiz-Latorre [10], Nourdin and Peccati [6] discovered a new method to

estimate distances between the standard normal distribution and other distributions, and between

the centered Gamma distributions and other distributions. The method is a combination of Stein’s

method and Malliavin calculus. Nourdin and Peccati’s method enables us to prove a part of the fourth

moment theorem in another way. Now applications and other versions of the fourth moment theorem

and Stein’s bound are considered.

In this talk, we review the fourth moment theorem and Stein’s method mainly, give a short review

of further results and related topics.

Now we give some useful information. A textbook [7] written by Nourdin and Peccati was published

recently. This book covers from the elementary tools for this topic to the fourth moment theorem and

the density estimates obtained by Stein’s method. The latest results on this topic are found on the

webpage:

http://www.iecn.u-nancy.fr/ nourdin/steinmalliavin.htm

Many of literatures (e.g. lecture notes, articles) are listed up on this webpage.

2 Preliminary on Wiener chaos

First we prepare the elementary things on Wiener chaos.

Let (T,B) be a measurable space, µ a σ-finite measure on (T,B) without atoms, and H :=

L2(T,B, µ). We introduce the isonormal Gaussian process with respect to H. Let W = {W (h); h ∈
H} be a family of random variables on a complete probability space (Ω,F , P ).

Definition 2.1. We call W is an isonormal Gaussian process (or Gaussian process on H) if the

following conditions hold.

(i) W is a Gaussian family (or a Gaussian system), i.e. for n ∈ N and h1, h2, . . . , hn ∈ H, the Rn-

valued random variable (W (h1),W (h2), . . . ,W (hn)) has an n-dimensional Gaussian distribution.

(ii) H is the Cameron-Martin space (or the reproducing kernel Hilbert space) of W , i.e.

E[W (h)] = 0, h ∈ H,(2.1)

E[W (g)W (h)] = (g, h)H , g, h ∈ H.(2.2)

Let W (A) := W (IA) for A ∈ B and µ(A) < ∞. Then, the law of W is also characterized by

{W (A);A ∈ B, µ(A) < ∞}, since L2-functions are approximated by simple functions (step functions,

elementary functions). The following assertions follows immediately from Definition 2.1.

(i) W (A) has the distribution N(0, µ(A)) for A ∈ B such that µ(A) < ∞.

1e-mail: kusuoka@math.kyoto-u.ac.jp
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(ii) W (A1) and W (A2) are independent of each other for A1, A2 ∈ {A ∈ B;µ(A) < ∞} such that

A1 ∩A2 = ∅.

(iii) A 7→ W (A) is an L2(Ω,F , P )-valued finitely additive measure on (T,B).

Note that A 7→ W (A) is not σ-additive.

Now, we start with the construction of multiple stochastic integrals. Let m ∈ N and B0 := {A ∈
B;µ(A) < ∞}. We define the multiple stochastic integral Im(f) of f ∈ L2(Tm,B⊗m, µ⊗m) as follows.

Let Em be the total set of the functions f such that

(2.3) f(t1, t2, . . . , tm) =

n∑
i1,i2,...,im=1

ai1,i2,...,imIAi1×Ai2×···Aim
(t1, t2, . . . , tm)

where n ∈ N, A1, A2, . . . , An are pairwise-disjoint sets in B0, and ai1,i2,...,im ∈ R such that ai1,i2,...,im =

0 if ik = il for some k, l = 1, 2, . . . , n. Note that Em is a linear space. For f expressed as in (2.3) we

define

Im(f) :=
n∑

i1,i2,...,im=1

ai1,i2,...,imW (Ai1)W (Ai2) . . .W (Aim).

For f ∈ L2(Tm,B⊗m, µ⊗m), define the symmetrization f̃ of f by

f̃(t1, t2, . . . , tm) =
1

m!

∑
π∈Sm

f(tπ(1), tπ(2), . . . , tπ(m))

where Sm is the group of permutations of {1, 2, . . . ,m}. Note that the mapping f 7→ f̃ from L2(µ⊗m)

to itself is linear and continuous for each m ∈ N. We call f symmetric if f = f̃ . Let H⊙n := {f ∈
H⊗n; f is symmetric}, and ∥f∥H⊙n :=

√
n!∥f∥H⊗n for f ∈ H⊙n. Then, following properties hold.

Proposition 2.2. (i) Im is a linear mapping form Em to L2(Ω,F , P ).

(ii) For f ∈ Em, Im(f) = Im(f̃).

(iii) For f ∈ Em and g ∈ Eq,

E[Im(f)Iq(g)] =

{
0 if m ̸= q,

m!(f̃ , g̃)L2(µ⊗m) if m = q.

By the property (iii)

(2.4) E[Im(f)2] = m!||f̃ ||2L2(µ⊗m) ≤ m!||f ||2L2(µ⊗m).

By (2.4) we have

E[Im(f)2] = ∥f∥2H⊙n , f ∈ H⊙n.

The following lemma holds.

Lemma 2.3. Em is dense in L2(µ⊗m).

By (2.4) and Lemma 2.3 we can extend Im to a bounded linear operator from L2(Tm,B⊗m, µ⊗m)

to L2(Ω,F , P ). The extension of Im also satisfies the properties in Proposition 2.2 again.

By using Hermite polynomial, we have the following theorem. The theorem is called the Wiener-

Chaos expansion.

Theorem 2.4. Assume that F is the σ-field generated by W = {W (h); h ∈ H}. Then, for any

F ∈ L2(Ω,F , P ), there exist symmetric functions {fn ∈ H⊙n;n = 0, 1, 2, . . . } such that f0 = E[F ]

and

F =
∞∑

n=0

In(fn).

The functions {fn} are uniquely determined by F .
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3 Preliminary on H-derivative

Let P be the class of the random variables F such that; there exist n ∈ N, a polynomial function f

on Rn, h1, h2, . . . , hn ∈ H, and F is expressed by

(3.1) F = f(W (h1),W (h2), . . . ,W (hn)).

Then, the following lemma holds.

Lemma 3.1. P is dense in Lp(Ω,F , P ) for p ∈ [1,∞).

We define the H-derivative operator D as follows.

Definition 3.2. For F ∈ P expressed as in (3.1), define the H-valued random variable DF of F by

DF =

n∑
i=1

∂if(W (h1),W (h2), . . . ,W (hn))hi.

We call DF by the H-derivative (or Malliavin’s derivative) of F .

It is easy to see that D is linear on P and D maps P into Lp(Ω,F , P ) for p ∈ [1,∞). Moreover,

the following lemma holds.

Lemma 3.3. D is a closable operator on Lp(Ω,F , P ) for p ∈ [1,∞).

By Lemmas 3.1 and 3.3, D can be extended to a closed (unbounded) linear operator on Lp(Ω,F , P )

for p ∈ [1,∞). We denote the extension by D again.

For F ∈ P and p ∈ [1,∞), define ∥F∥1,p by

∥F∥1,p := (E[|F |p] + ∥DF∥pH)
1/p

.

It is easy to see that ∥ · ∥1,p satisfies the properties of norms, and we can consider the closure of P
with respect to ∥ · ∥1,p. We denote the closure by D1,p. Note that ∥ · ∥1,p is the operator norm of D

in Lp(Ω,F , P ). The function space D1,p is the Sobolev space associated with the H-derivative with

index 1, p. Similarly, we can define the Sobolev space Dk,p of higher orders.

Proposition 3.4. Let F ∈ D1,2 such that F =
∑∞

n=0 In(fn) where fn ∈ H⊙n. Then,

(DF, h)H =

∞∑
n=1

n

∫
T

In−1(fn(·, t))h(t)µ(dt)

where fn(·, t) is the function on Tn−1 given by

[fn(·, t)](s1, s, 2, . . . , sn − 1) := fn(s1, s2, . . . , sn−1, t), s1, s2, . . . , sn ∈ T.

Hence,

E[∥DF∥2H ] =

∞∑
n=1

nn!∥fn∥2H⊗n =

∞∑
n=1

n∥fn∥2H⊙n .

Now we define the operator δ as the follows.

Definition 3.5. Let δ be the dual operator of D : L2(Ω,F , P ) → L2(Ω,F , P ;H).

The operator δ is called the Skorohod integral. We remark that the Skorohod integral can be

regarded as an extension of the stochastic integral (Itô integral).

Let L be the Ornstein-Uhlembeck operator on L2(Ω,F , P ) associated with W . There are some

ways to define the Ornstein-Uhlembeck operator. For example, in [9] the Ornstein-Uhlembeck operator
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is defined by using Wiener chaos expansion. On the other hand, in [13], first we define the Ornstein-

Uhlembeck semigroup by using the explicit transition semigroup, and the Ornstein-Uhlembeck opera-

tor is defined by the generator of the Ornstein-Uhlembeck semigroup. We omit the precise definition

of L here, and only remark that the domain of L includes P and L is characterized by

LF =
n∑

i,j=1

∂i∂jf(W (h1),W (h2), . . . ,W (hn))(hi, hj)H(3.2)

−
n∑

i=1

∂if(W (h1),W (h2), . . . ,W (hn))W (hi)

where F is the random variable expressed as (3.1).

The following propositions hold.

Proposition 3.6. δD = −L.

Proposition 3.7. For f ∈ H⊗n, LIn(f) = −nIn(f).

We use these facts in the proofs of the fourth moment theorem and the Stein’s bound.

4 The fourth moment theorem

In this section, we give the version of the fourth moment theorem given by Nualart and Ortiz-Latorre

[10].

First we define the contraction of functions. For f ∈ L2(T p,B⊗p, µ⊗p), g ∈ L2(T q,B⊗q, µ⊗q) and

r = 1, 2, . . . ,min{p, q}, we define f ⊗ g ∈ L2(T p+q,B⊗p+q, µ⊗p+q) and

f ⊗r g ∈ L2(T p+q−2r,B⊗p+q−2r, µ⊗p+q−2r) by

(f ⊗ g)(t1, t2, . . . , tp+q)

= f(t1, t2, . . . , tp)g(tp+1, tp+2, . . . , tp+q),

(f ⊗r g)(t1, t2, . . . , tp+q−2r)

=

∫
T r

f(t1, t2, . . . , tp−r, s1, s2, . . . , sr)g(tp−r+1, tp−r+2, . . . , tp+q−2r, s1, s2, . . . , sr)

× µ⊗r(ds1, ds2, . . . , dsr),

respectively. We call the operation (f, g) 7→ f ⊗r g is called the contraction of f and g of order r.

Since f ⊗ g can be regarded as f ⊗r g with r = 0, we define f ⊗0 g by f ⊗ g.

The tensor product f ⊗ g and the contractions f ⊗r g are not always symmetric even if f and g

are symmetric. We denote the symmetrizations of f ⊗ g and f ⊗r g by f⊗̃g and f⊗̃rg, respectively.

By using contraction we can calculate the product of two random variables in some levels of Wiener

chaos as follows.

Proposition 4.1. Let f ∈ L2(µ⊗p) be symmetric and g ∈ L2(µ). Then,

(4.1) Ip(f)I1(g) = Ip+1(f ⊗ g) + pIp−1(f ⊗1 g).

The proposition 4.1 is extended as follows.

Proposition 4.2. Let f ∈ L2(µ⊗p) and g ∈ L2(µ⊗q) are symmetric. Then,

(4.2) Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g).
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Note that Proposition 4.2 gives the explicit information of the Wiener chaos expansion of the

product of two random variables in some levels of Wiener chaos. The proposition is crucial to prove

the fourth moment theorem. In the proof of Proposition 4.2, complicated calculation in combination

is needed.

By using Proposition 4.2, we have the fourth moment theorem which is the version given by Nualart

and Ortiz-Latorre [10] as follows.

Theorem 4.3. (The fourth moment theorem) Consider a sequence {Fk = In(fk)} of square integrable

random variables in the n-th Wiener chaos. Assume that

(4.3) lim
k→∞

E[F 2
k ] = lim

k→∞
∥fk∥2H⊙n = 1.

Then, the following statements are equivalent.

(i) {Fk = In(fk)} converges to the standard normal law in distribution as k → ∞.

(ii) limk→∞ E[F 4
k ] = 3.

(iii) limk→∞ ∥fk ⊗l fk∥H⊗2(n−l) = 0 for l = 1, 2, . . . , n− 1.

(iv) ∥DFk∥2H converges to n in L2 as k → ∞.

Multidimensional case of the fourth moment theorem is considered in [12], and [10]. In [6] the

fourth moment theorem with respect to the centered Gamma distribution is also obtained.

5 Stein’s method and Application of Malliavin calculus

Charles Stein considered in order to estimate the reminder term of the central limit theorem (see

[14]). He prepared the ordinary differential equation associated with the standard normal distribution

satisfies, and obtained a bound of the reminder term by using the solution to the equation. The

equation is called Stein’s equation, and the method to obtain the bound is called Stein’s method.

The large deviation principle is also well-known as a method to obtain the convergence rate of the

central limit theorem (or the law of large numbers.) The large deviation principle has advantages in

analysis to Stein’s method, because the large deviation principle is related to the spectral analysis.

On the other hand, Stein’s method has advantages in computation and in practice, because the bound

of the reminder term is obtained by explicit calculations. By using Stein’s method, one can estimate

the distances between the standard normal distribution and other distributions, where the distances

mean, for example, Kolmogorov distance, Wasserstein distance, and total variation distance.

First we give the detail of Stein’s equation and Stein’s bound. Let Z be a random variable with

the standard normal distribution and h be a measurable function on R such that E[|h(Z)|] < ∞.

Stein’s equation associated with h and Z is

(5.1) h(x)− E[h(Z)] = f ′(x)− xf(x), x ∈ R.

The solution f to (5.1) is obtained explicitly as follows:

(5.2) f(x) = e
1
2x

2

∫ x

−∞
(h(y)− E[h(Z)]) e−

1
2y

2

dy, x ∈ R.

By using (5.1) and (5.2), the following proposition holds.

Proposition 5.1. (i) Let X be a random variable. Then, X has the standard normal distribution

if and only if,

E[f ′(X)−Xf(X)] = 0

for every continuous and piecewise differentiable function f satisfying E[|f ′(Z)|] < ∞.
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(ii) If h(x) = I(−∞,z](x) where z ∈ R, then the solution f to (5.1) exists, f is piecewise continuously

differentiable, ∥f∥∞ ≤
√
2π/4, and ∥f ′∥∞ ≤ 1.

(iii) If h is bounded by 1/2, the solution f to (5.1) exists, f is differentiable almost everywhere,

∥f∥∞ ≤
√
π/2, and ∥f ′∥∞ ≤ 2.

(iv) If h is bounded and absolutely continuous, then the solution f to (5.1) exists, f is bounded

and twice differentiable, ∥f∥∞ ≤
√
π/2∥h(y) − E[h(Z)]∥∞, ∥f ′∥ ≤ 2∥h(y) − E[h(Z)]∥∞, and

∥f ′′∥∞ ≤ 2∥h′∥∞.

(v) If h is absolutely continuous and the derivative is bounded, then the solution f to (5.1) exists, f

is twice differentiable, ∥f ′∥∞ ≤ ∥h′∥∞, and ∥f ′′∥∞ ≤ 2∥h′∥∞.

The proofs of the statements in Proposition 5.1 are found in the references in [6].

By using (5.1) and the bound in Proposition 5.1, we can consider the estimate for the distances

between the standard normal distribution and other distributions.

Consider a distance between distributions of random variables F and G on R defined by

(5.3) dH(L(F ),L(G)) := sup
f∈H

|E[f(F )]−E[f(G)]|,

where H is a set of functions on R. There are many distances between distributions defined by (5.3).

For example, by taking H = FKol := {I(−∞,z] : z ∈ R}, one obtains the Kolmogorov distance; by

taking H = FW := {f : ||f ||L ≤ 1}, where || · ||L denotes the usual Lipschitz seminorm, one obtains

the Wasserstein (or Kantorovich-Wasserstein) distance; by taking H = FFM := {f : ||f ||BL ≤ 1},
where || · ||BL = || · ||L + || · ||∞, one obtains the Fortet-Mourier (or bounded Wasserstein) distance;

by letting H = FTV be the collection of all indicators IB of Borel sets, one obtains the total variation

distance. We denote the Kolmogorov distance, the Wasserstein distance, Fortet-Mourier distance and

the total variation distance by dKol(·, ·), dW(·, ·), dFM(·, ·) and dTV(·, ·), respectively.
The following theorem is the result on the estimate of the distances, which is obtained by Nourdin

and Peccati [6].

Theorem 5.2. (Theorem 3.1 of [6]) Let Z has the standard normal distribution, and F ∈ D1,2 such

that E[F ] = 0. Then,

dW(F,Z) ≤ E
[
(1− (DF,−DL−1F )H)2

]1/2
,

dFM(F,Z) ≤ E
[
(1− (DF,−DL−1F )H)2

]1/2
.

If, in addition, the law of F is absolutely continuous with respect to Lebesgue measure,

dKol(F,Z) ≤ E
[
(1− (DF,−DL−1F )H)2

]1/2
,

dTV(F,Z) ≤ 2E
[
(1− (DF,−DL−1F )H)2

]1/2
.

On the other hand, by using Proposition 4.2, we have the following Proposition.

Proposition 5.3. (Proposition 3.2 of [6]) Let n = 2, 3, 4, . . . , and F = In(f) where f ∈ H⊙n. Then,

(DF,−DL−1F )H = n−1∥DF∥2H , and

E
[
(1− (DF,−DL−1F )H)2

]
= E

[
(1− n−1∥DF∥2H)2

]
(5.4)

= (1− n!∥f∥2H⊗n)2 + n2
n−1∑
r=1

(2n− 2r)! [(r − 1)!]2
(

n− 1

r − 1

)4

∥f⊗̃rf∥H⊗2(n−r)(5.5)

≤ (1− n!∥f∥2H⊗n)2 + n2
n−1∑
r=1

(2n− 2r)! [(r − 1)!]2
(

n− 1

r − 1

)4

∥f ⊗r f∥H⊗2(n−r) .(5.6)
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By using Theorem 5.2 and Proposition 5.3 we can simplify some parts of the proof of the fourth

moment theorem (Theorem 4.3).

The case of the centered Gamma distribution is also considered in [6]. They prepared Stein’s

equation associated with the centered Gamma distribution, and obtained the bound of convergence

to the centered Gamma distribution by similar way to the case of the standard normal distribution.

6 Further works on the fourth moment theorem and related

topics

In this section we introduce some further studies around the fourth moment theorem.

6.1 The case of the centered Gamma distribution

An analogue of the fourth moment theorem to the centered Gamma distribution is obtained by Nourdin

and Peccati [5]. The statement is as follows.

Let ν > 0 and G(ν/2) be a random variable having the Gamma distribution with parameter ν/2,

i.e. G(ν/2) is a random variable with density function g(x) = xν/2−1e−x

Γ(ν/2) I(0,∞), where Γ is the Gamma

function. Consider a random variable F (ν) defined by

F (ν) := 2G(ν/2)− ν.

The following theorem is an analogue of the fourth moment theorem with respect to F (ν).

Theorem 6.1. Let n ∈ 2N and

cn :=
4

(n/2)!

(
n

n/2

)2 .

Consider a sequence of random variables Gk = In(gk) where gk ∈ H⊙n and assume that

lim
k→∞

E[G2
k] = lim

k→∞
n!∥gk∥2H⊗n = 2ν.

Then, the following conditions are equivalent.

(i) Gk converges to F (ν) in distribution as k → ∞.

(ii) limk→∞(E[G4
k]− 12E[G3

k]) = 12ν2 − 48ν.

(iii) ∥DGk∥2H − 2nGk converges to 2nν in L2(P ) as k → ∞.

(iv) limk→∞ ∥gk⊗̃n/2gk − cngk∥H⊗n = 0 and limk→∞ ∥gk ⊗r gk∥H⊗2(n−r) = 0 for r = 1, 2, . . . , n − 1

except r = n/2.

In [6], they discuss the case of the centered Gamma distribution in a similar way to the case of the

standard normal distribution, and Stein’s equation with respect to the centered Gamma distribution

is obtained. We omit the version of Stein’s equation in this note, because more general version of

Stein’s equation is in Section 6.2.

6.2 Generalization of Stein’s bound

As we have seen in Theorem 5.2, by applying Malliavin calculus to Stein’s equation we obtain the

estimate of the distances between distributions. The cases of the standard normal distribution and

the centered Gamma distribution are considered in [6], and more general argument is also mentioned

as a conjecture in [6]. After Nourdin and Peccati [6], in [4] a general argument is constructed in view

of the invariant measure of one-dimensional stochastic differential equation.
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Let S be the interval (l, u) (−∞ ≤ l < u ≤ ∞) and µ be a probability measure on S with a density

function p which is continuous, bounded, strictly positive on S, and admits finite variance. Consider

a continuous function b on S such that there exists k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k) and

b(x) < 0 for x ∈ (k, u), bp is bounded on S and∫ u

l

b(x)p(x)dx = 0.

Define

a(x) :=
2
∫ x

l
b(y)p(y)dy

p(x)
, x ∈ S.

Then, the stochastic differential equation:

dXt = b(Xt)dt+
√

a(Xt)dWt, t ≥ 0

has a unique Markovian weak solution, ergodic with invariant density p (see [1]).

For f ∈ C0(S) (the set of continuous functions on S vanishing at the boundary of S), let mf :=∫ u

l
f(x)p(x)dx and define g̃f by, for every x ∈ S,

g̃f (x) :=
2

a(x)p(x)

∫ x

l

(f(y)−mf )p(y)dy

Then, we have

g̃f (x) =

∫ x

l

2(f(y)−mf )

a(y)
exp

(
−
∫ x

y

2b(z)

a(z)
dz

)
dy, x ∈ S.

Then, gf (x) :=
∫ x

0
g̃f (y)dy satisfies that f −mf = Agf and

(6.1) f(x)−E[f(X)] =
1

2
a(x)g̃′f (x) + b(x)g̃f (x)

where X is a random variable with its law µ. The equation (6.1) is a generalized version of Stein’s

equation.

To obtain the estimate of the distances between the distribution associated with p(x)dx and other

distributions, we need the bounds for the functions g̃f and g̃′f . Since we have the explicit form of g̃f ,

the following propositions are obtained.

Proposition 6.2. Assume that a is uniformly positive and there exist l′, u′ ∈ (l, u) such that b is

non-increasing on (l, l′) and (u′, u). Then we have

||g̃f ||∞ ≤ C1||f ||∞ and ||ag̃′f ||∞ ≤ C2||f ||∞, f ∈ C∞
0 (S),

where C1 and C2 are strictly positive constants.

Proposition 6.3. Assume that if u < ∞, there exists u′ ∈ (l, u) such that b is non-decreasing

and Lipschitz continuous on [u′, u) and lim infx→u a(x)/(u − x) > 0; if u = ∞, there exists u′ ∈
(l, u) such that b is non-decreasing on [u′, u) and lim infx→u a(x) > 0. Similarly, assume that if

l > −∞, there exists l′ ∈ (l, u) such that b is non-increasing and Lipschitz continuous on (l, l′] and

lim infx→l a(x)/(x − l) > 0; if l = −∞, there exists l′ ∈ (l, u) such that b is non-decreasing on (l, l′]

and lim infx→l a(x) > 0. Then we have

||g̃′f ||∞ ≤ C4(||f ||∞ + ||f ′||∞), f ∈ C∞
0 (S),

where C4 is a constant.

The estimates in Proposition 6.2 are sufficiently good when a is uniformly bounded and strictly

positive. However, when a degenerates at the boundary of S, we need Proposition 6.3. We remark

that in Proposition 6.3 the derivative of g̃f is dominated by the sum of ||f ||∞ and ||f ′||∞. In view of
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this fact it seems true that the case that a is uniformly positive and the case that a is degenerate are

very different. In fact, the result obtained in the case of the standard normal distribution is different

from that obtained in the case of the centered Gamma distribution (see Sections 5 and 6.1).

By using the generalized Stein’s equation (6.1) and Propositions 6.2 and 6.3, the estimate of the

distances between the distribution associated with µ = p(x)dx and other distributions is obtained in

the same way as 5.

Theorem 6.4. (i) Let d be the Fortet-Mourier distance. Assume the conditions in Proposition 6.3.

Then,

d(L(Y ), µ) ≤ CE

[∣∣∣∣12a(Y ) + ⟨D(−L)−1 {b(Y )−E[b(Y )]} , DY ⟩H
∣∣∣∣]

+ C|E [b(Y )] |, Y ∈ D1,2

where C is a positive constant and L(Y ) is the law of Y .

(ii) Let d be the Fortet-Mourier distance, the Kolmogorov distance or the total variation distance.

Assume the conditions in Proposition 6.2 and a is uniformly positive. Then,

d(L(Y ), µ) ≤ CE

[∣∣∣∣12a(Y ) + ⟨D(−L)−1 {b(Y )−E[b(Y )]} , DY ⟩H
∣∣∣∣]

+ C|E [b(Y )] |, Y ∈ D1,2

where C is a positive constant.

The bounds in Theorem 6.4 are optimal in the following sense.

Theorem 6.5. A random variable Y ∈ D1,2 with its values on S has probability distribution µ and

satisfies that b(Y ) ∈ L2(Ω) if and only if E[b(Y )] = 0 and

E

[
1

2
a(Y ) + ⟨D(−L)−1b(Y ), DY ⟩H

∣∣∣∣Y ]
= 0.

In Theorem 6.4, there is the term:

(6.2) E

[∣∣∣∣12a(Y ) + ⟨D(−L)−1 {b(Y )−E[b(Y )]} , DY ⟩H
∣∣∣∣] .

Generally it is difficult to calculate this term. However, if a and b are given explicitly, and if Y is

expressed as an explicit function of a Gaussian random variables, then (6.2) can be calculated by using

the Ornstein-Uhlembeck semigroup and its resolvent (see [4] and [8].)

6.3 Other works

There are many other works on this topic.

The analogue in free probability theory has been concerned in [3]. In free probability theory, we

also have the analogue of Wiener chaos (so-called Wigner chaos or free chaos). In [3], the analogues

of the fourth moment theorem and Stein’s bound with respect to the semicircular law are obtained.

In [2], the original Stein’s method is applied to the theory of spin glasses. In the paper, the

Thouless-Anderson-Palmer equations of the Sherrington-Kirkpatrick model is obtained. Moreover,

the upper estimate of the convergence to the Thouless-Anderson-Palmer equations is also obtained by

using the original Stein’s method. Like this, the applications of Stein’s method to statistical mechanics

are also considered and some results have been obtained recently. We remark that the argument in

the paper is away from the fourth moment theorem and the combination of Stein’s method and the

Malliavin calculus.
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