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Let −L + Vλ be a spatially cut-off P (ϕ)2-Hamiltonian, where λ = 1/~ is a large positive
parameter. The operator −L is the free Hamiltonian, that is the second quantization operator
of

√
m2 −∆, where m is a positive number. The potential function Vλ is given by a Wick

polynomial

Vλ(w) = λ

∫
R
: P

(
w(x)√

λ

)
: g(x)dx, (1)

where g is a smooth cut-off function and P (x) =
∑2M

k=1 akx
k is a polynomial bounded from below.

Formally, −LA + Vλ is unitarily equivalent to the infinite dimensional Schrödinger operator:

−∆L2(R) + λU(w/
√
λ)− 1

2
tr(m2 −∆)1/2 on L2(L2(R), dw) (2)

where dw is an infinite dimensional Lebesgue measure. The function U is a potential function
such that

U(w) =
1

4

∫
R
w′(x)2dx+

∫
R

(
m2

4
w(x)2+ : P (w(x)) : g(x)

)
dx

and ∆L2(R) denotes the “Laplacian”on L2(R, dx). Hence, by the analogy of Schrödinger operators
in finite dimensions, it is natural to expect that asymptotic behavior of lowlying eigenvalues of
the spatially cut-off P (ϕ)2-Hamiltonian in the semiclassical limit λ → ∞ is related with the
global minimum points of U . In view of this, we consider the following assumptions.

Assumption 1. Let P be the polynomial in (1) and U be the function on H1 which is given
by

U(h) =
1

4

∫
R
h′(x)2dx+

∫
R

(
m2

4
h(x)2 + P (h(x))g(x)

)
dx for h ∈ H1. (3)

(A1) The function U is non-negative and the zero point set

Z := {h ∈ H1 | U(h) = 0} = {h1, . . . , hn} (4)

is a finite set.
(A2) For all 1 ≤ i ≤ n, the Hessian ∇2U(hi) is non-degenerate. That is, there exists δi > 0 for
each i such that

∇2U(hi)(h, h) :=
1

2

∫
R
h′(x)2dx+

∫
R

(
m2

2
h(x)2 + P ′′(hi(x))g(x)h(x)

2

)
dx

≥ δi∥h∥2L2(R) for all h ∈ H1(R). (5)

(A3) For all x, P (x) = P (−x) and Z = {h0,−h0}, where h0 ̸= 0.
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Let E1(λ) be the lowest eigenvalue of −L+ Vλ. The first main result is as follows.

Theorem 2. Assume that (A1) and (A2) hold. Let E1(λ) = inf σ(−L+ Vλ). Then

lim
λ→∞

E1(λ) = min
1≤i≤n

Ei, (6)

where
Ei = inf σ(−L+Qvi) (7)

and Qvi is given by

Qvi(w) =

∫
R
: w(x)2 : vi(x)dx, vi(x) =

1

2
P ′′(hi(x))g(x). (8)

Remark 3. In the case of finite dimensional Schrödinger operators, there exist eigenvalues near
the approximate eigenvalues Ei when λ is large. In Theorem 2, if Ei < m +min1≤i≤nEi, then
the same results hold by the result of Hoegh-Krohn and Simon. However, if it is not the case,
it is not clear and they may be embedded eigenvalues in the essential spectrum. Under the
assumptions in Theorem 5, E2(λ) is an eigenvalue for large λ.

Let
E2(λ) = inf {σ(−L+ Vλ) \ {E1(λ)}} .

We can prove that E2(λ) − E1(λ) is exponentially small when U is a symmetric double well
potential function. The exponential decay rate is given by the Agmon distance which is defined
below.

Definition 4. Let 0 < T < ∞ and h, k ∈ H1(R). Let ACT,h,k(H
1(R)) be the all absolutely

continuous paths c : [0, T ] → H1(R) satisfying c(0) = h, c(T ) = k. Let U be the potential
function in (3). Assume U is non-negative. We define the Agmon distance between h, k by

dAg
U (h, k) = inf

{
ℓU (c) | c ∈ ACT,h,k(H

1(R))
}
, (9)

where

ℓU (c) =

∫ T

0

√
U(c(t))∥c′(t)∥L2dt. (10)

The following estimate is the second main result.

Theorem 5. Assume that U satisfies (A1),(A2),(A3). Then it holds that

lim sup
λ→∞

log (E2(λ)−E1(λ))

λ
≤ −dAg

U (h0,−h0). (11)


