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Global Holder Properties of the Density of the
Solutions of SDEs with Singular Drift Coefficient

GO Yiki
Ritsumeikan University and Japan Science and Technology Agency

Joint work with
Arturo Kohatsu-Higa*and Masafumi Hayashi'

1 Introduction

In this presentation, we will discuss the regularity of the density of the distri-
bution of the solution of SDEs with singular drift coefficient. In the following,
we always assume uniformly ellipticity for the diffusion coefficient.

ICusuoka and Stroock show that if coefficients of SDE are sufficiently smooth
then there exists smooth density ([3]). Also, Bouleau and Hirsch show that if
the coefficients are Lipschitz continuous then there exists density ([1]).

Recently, Fournier and Printems show that for one dimensional SDE if the
diffusion coeflicient ¢ is a-Hlder continuous with & > § and drift coefficient is
at most linear growth then the solution of the SDE admits a density (see [2]}.
Also Bally announced that this result can be extended in multidimensional case
with e-Hélder continuous o, where @ > 0.

The above results do not guarantee Holder continuity properties of the den-
sity. However, if the diffusion coefficient is deterministic and Fourter transform
of the drift coefficient exists then we may show that Hblder continuity properties
of the density.

2 Main Result

In this presentation, we consider following d-dimensional SDE:
¢ ) t
X =y +f g4(sydB] +/ b(X,)ds,
0 0

where ¢ : [0,7] = R x R and b: R = R are Borel measurable functions.

*Ritsumeikan University and Japan Science and Technology Agency.
Y University of the Ryukyus and Japan Science and Technology Agency.



We assume following hypothesizes to coefficients:
{A1): b is bounded.
(A2): o is uniformly elliptic and belongs to L? ([0, 7); RY).
We also assume that the drift coeflicient b satisfies one of the following
conditions.
{A3): There exist constants Cy > 0 and o > 0 such that

Ca
<
=

I'?b(g)i = ‘/};d G_iﬂ.mb((ﬂ)dﬁ Tlal)}"

holds for k:=d— 1+ .
{A4): There exist constants Oy > 0 and o > 0 such that

d
1
#0601 < L e

holds for k:=1— é +a.
Our approach is based on Fourier transform method. To prove the Hoider
continuity of the density, we use following classical result.

Lemma 2.1. Let X be a R valued random varieble and © be its characteristic
Junction. If there exits n € (0,1) such that

[, lorle(o)lds < oo
Rl.[
then the densily function of the law of X exists and is v-Hélder continuous for
any 0 <y <n.
Under these assumptions and by using Lemma 2.1., we have following result.

Theorem 2.1. Let ¢ € (0,1]. Assume that (A1}, (A2) and (A3) or (A4) hold
and there exist positive constants C, B and § € (0,t) such thut

‘EQ [exp (@e : fs ‘ o (u)dBf;)} ‘ < exp(=~C|O2(t ~ 5)P)

for any s € [t — 6,t]. Then the density function of the low of X, exists and is
A-Hélder continuous for any A € (O, (o + % —-2)A 1) .
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Pfaffian expressions for correlation functions of zeros
of a Gaussian power series

Sho Matsumoto (Nagoya University)

This is a joint work with Tomoyuki Shirai (Kyushu University).

The zero distributions for Gaussian analytic functions have been studied for many
years. Kac [1] gives an explicit expression for the probability density function of real zeros
of a random polynomial p,(z) = > lo=0 axz®, where a; are i.i.d. real standard Gaussian
random variables. Peres and Virdg (2] study a random power series fo(2) = 3 peq Ce2”,
where (;; are i.i.d. complex standard Gaussian random variables, and show that the zero
distribution of fc forms a determinantal point process associated with the Bergman kernel

We here con51der a random power series

f(Z) = Za’kzk:
k=0

where qy, are i.i.d. real standard Gaussian random variables. The random function f is a
limiting version of Kac polynomial p, and a real version of fe. From the Borel-Cantelli
lemma, we see that the radius of convergence of f is almost surely 1. Furthermore,
the restriction {f(¢)}ter to the interval / = {—1,+1) becomes a Gaussian process with
covariance E[f(s)f(t)] = 2.

Our main resulis state that the zero distribution of f forms a Pfaffian point pro-
cess. Recall the definition of the Pfaffian. For a 2n x 2n skew-symmetric matrix B =
(bij)lgi,jg2n, the Pfaffian of B is

PtB = Z &(0)bo(m1e@Pbo(3104) * ** bo(zn—1)a(2n)
o

summed over all permutations o of 1,2, ..., 2n satisfying o(2i—1) < ¢(20) (: = 1,2,...,n)
and (1) < o(8) < -+ < ¢(2n — 1). Here (o) is the signature of .

Theorem 1. Let o, (t1,...,t,) be the correlation function for real zeros of f. Foriy,ta,... Iy €
I, we have

oltn, s tn) = 7 PEK (G 6) hcijcn

Here each K(s,t) (s,t € I) is a 2 x 2 matriz and PE(K (%, t5))1<i j<n is the Pfaffian of the
In x 2n skew-symmetric matriz (K(t;,t;))1<1j<n- The matriz kernel K(s,t) is defined as

follows:
Ki1(s,t) Kiafs,t
K(s,t) = (]}{2153, ﬁ; Kzzgzat%)



and

s—1t 1—-¢2 1
. Kials, i) = e
VI = &)1 = 2)(1 — st)? w8t =\ T

1—s2 1 . A/ (1—-s2)(1—12
Koi(s,t) = — ”ﬁﬂ’ Koo(s,t) =sgn(t — s) arcsin RYA it ls_lg )

Heresgnt =1 fort > 0;sgnt = —1 fort < 0; and sgn0 = 0.

Kn(&, t) =

Theorem 2. Let p8(z1,...,2,) be the correlation function for complex zeros of f. For
complex numbers z1, ..., z, satisfying |z < 1 and (2;) > 0, we have

Aulzts. .., 20) (71-\/_&- H ‘1 K*(2i, 25) h1<iizn
with

Z=u =l
K°(z,w) = (1{-‘1}? 1;%”)

1~Zw  1~Z©

As corollaries of our proof of Theorem 1, we obtain the following Pfaflian expressions
for absolute value moments and sign moments.

[}

Theorem 3. For distinct £1,1s,...,t, € I,

‘ 2\ .
Bl () () Fe)l) = () (der 2)7H PIR(t i sesen

the= () .
w 1=hE ) i< ign

Theorem 4. For distinct t1,1a,...,ton € 1,

Elsgn f(t1) sgn f(f2) - - - sgn f(tea)] = (%) II  sen(t; —t) - PE(Kaa(tiy t5))1<igon-

1<i<ij<on
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Survey on the fourth moment theorem, Stein’s method and related
topics

Seiichiro Kusuoka! (Tohoku University)

1 Introduction

The fourth moment theorem was originally introduced by Nualart and Peccati [11]. The theorem gives
some equivalent conditions for a sequence of random variables belonging to a level of Wiener chaos to
convergent to the standard normal distribution. The most surprising part of the theovem is that; if
the variances of the sequence converge to 1, then the convergence to the standard normal distribution
is equivalent to the convergence of the fourth moments of the sequence to 3. After that, Nualart
and Ortiz-Latorre {10] gave another equivalent condition and made a clearer proof in their paper.
Stimulated by Nualart and Ortiz-Latorre [10], Nourdin and Peccati [6] discovered a new method to
estimate distances between the standard normal distribution and other distributions, and between
the centered Gamma distributions and other distributions. The method is a combination of Stein’s
method and Malliavin calculus. Nourdin and Peccati’s method enables us to prove a part of the fourth
moment theorem in another way, Now applications and other versions of the fourth moment theorem
and Stein’s bound are considered.

In this talk, we review the fourth morment theorem and Stein’s method mainly, give a short review
of further results and related topics.

Now we give some useful information. A textbook [7] written by Nourdin and Peccati was published
recently. This book covers from the elementary tools for this topic to the fourth moment theorem and
the density estimates obtained by Stein's method. The latest results on this topic are found on the
webpage:

http:/ /www.iecn.u-naney.fr/ nourdin/steinmalliavin htm
Many of literatures (e.g. lecture notes, articles) are listed up on this webpage.

2 Preliminary on Wiener chaos

First we prepare the elementary things on Wiener chaos.

Let (), %) be a measurable space, y a o-finite measure on (7', %) without atoms, and H :=
L2(T, 8B, p). We introduce the isonormal Gaussian process with respect to H. Let W = {W(h); h €
H} be a family of random variables on a complete probability space (Q, F, P).

Definition 2.1. We call W is an isonormal Gaussion process [or Guussian process on H) if the
following conditions hold.

(i) W is o Gaussian family (or a Gaussian system), i.e. forn e N and by, ha,..., hp € H, the R®-
valued random variable (W{hy), W{ha), ..., W(hn)) has an n-dimensional Gaussion distribution.

(ii) H is the Cameron-Martin space (or the reproducing kernel Hilbert space) of W, i.e.
(2.1) B{Wh)] =0, he H,
(2'2) E[W(Q)W(h)] = ( =h’)H7 g,h £ H.
Let W({A) = W(l4) for A € & and u(A) < oco. Then, the law of W is also characterized by

{W(A); A € B, u(A) < 0o}, since L?-functions are approximated by simple functions (step functions,
elementary functions). The following assertions follows immediately from Definition 2.1.

(i} W(A) has the distribution N(0, u(A)) for A € B such that u(4) < oco.

le-mail: kusuoka@®math.kyoto-u.ac.jp




(ii) W(A,) and W(As) are independent of each other for A1, Az € {A € &, u(A) < co} such that
Al n Ag = @

(iii) A+~ W(4)is an L2(5}, #, P)-valued finitely additive measure on (1, &).

Note that A — W(A) is not g-additive.

Now, we start with the construction of multiple stochastic integrals. Let m e N and &y = {A e
B; u(A) < oo}, We define the muitiple stochastic integral Ip () of £ € L2(T™, &®™, 4™} as follows.
Let &, be the total set of the functions f such that

n

{23) .f(tlwtﬂa-"wtm) = Z a'il,i2,-..,im]IAi1 ®Aiy X---.‘hm (tI)tZa"'ytm)

i,i2,0im=1

wheren € N, A;, As, ..., A, are pairwise-digjoint sets in &y, and ai, 4,.....1,. € B such that a;, iy, 4, =
0 if ¢, = 4; for some k,! = 1,2,...,n. Note that £, is a linear space. For f expressed as in (2.3) we
define ) .

In(f) = > Gy WAL W (Ay,) . W(A, ).

i1,i2,0tm =1
For f € L2{(T™, %™, y®™), define the symmetrization fof f by

1
f(tlytm e atm) w2 E Z f(t'rr(l)s t‘rr'(2): LR :t'rr(m))
) TeEG,

where G, is the group of permutations of {1,2,...,m}. Note that the mapping f -+ [ from L?(u®m)
to itself is linear and continuous for each m € N. We call f symmetric if f = f. Let HO" := {f €
H®"; f is symmetric}, and ||f||gon = V7| f|| gen for £ € HO™. Then, following properties hold.

Proposition 2.2. (i} Ly is o linear mapping form En, to L*(Q, F, P).
(i) For f € Em, In(f) = Im(f).
(i) For f € &y and g € &,
B = o7 dcoms 5 s
By the property (iii)
(2.4) Bl (£)?) = mll| fll32guom) < mllIF]Zeguom)-

By (2.4) we have
ELa (5% = | flFron, f € HO™

The following lemma holds.
Lerama 2.3. &, is dense in LE(u®™).

By {2.4) and Lemma 2.3 we can extend I, to a bounded linear operator from L2(T™, g®m ,8m)
to L*(Q, #, P). The extension of I, also satisfies the properties in Proposition 2.2 again.

By using Hermite polynomial, we have the following theorem. The theorem is called the Wiener-
Chaos expansion.

Theorem 2.4. Assume that F is the o-fleld generated by W = {W(h); h € H}. Then, for any
F e LHQ, F,P), there ezist symmetric functions {f, € H®;n = 0,1,2,...} such that fo = E[F]
and

F=3" L{f).
n=0

The functions {f.} are uniguely determined by F.



3 Preliminary on H-derivative

Let P be the class of the random variables F' such that; there exist n € N, a polynomial function f
on R®, hi,he,... in € H, and F is expressed by

(3.1) F= f(W(h), W(ha}, ..., W(hs))-
Then, the following lemma holds.
Lemma 3.1. P is dense in LP(Q0, F . P) forp € [1,00).
We define the H-derivative operator D) as follows.
Definition 3.2. For F € P expressed as tn (8.1}, define the H-valued random variable DF of F' by
DF = " aif(W(h1), W(ha), ..., W(ha))he.
20
We call DF by the H-derivative (or Mulliovin's derivative) of F.

It is easy to see that D is linear on P and D maps P into LF(Q, &, P) for p € [1,00). Moreover,
the following lemma. holds. ’

Lemma 3.3. D is a closable operator on LP(Q, &, P) for p € [1, ).

By Lemmas 3.1 and 3.3, D can be extended to a closed (unbounded) linear operator on LP(§}, &, P)
for p € [1,00). We denote the extension by D again.
For F € P and p € [1,00), define || Fil1p by

1F )|y p == (BIFE] + | DF|E M.

Tt is easy to see that |j - |1, satisfies the properties of norms, and we can consider the closure of P
with respect to {| - [|l1,,. We denote the closure by D', Note that || - ||1, is the operator norm of D
in LP(Q, #, P). The function space D'? is the Sobolev space associated with the H-derivative with
index 1,p. Similarly, we can define the Sobolev space D¥®® of higher orders.

Proposition 3.4, Let F' € DM2 such that F =Y e In(fn) where f € HO™. Then,
o0
CLOPED LY RN IOMCD
n=1

where fo(-, 1) is the function on T"™! given by

Ul B))(81,8, 2,00 80— 1) == fals1,82,.. ., 8n-1,8), $1,82,...,8, €T\

Henece,
[e.0] o0
E(|DF|I%) =Y nalllfalllien = D nllfalfron-
n=1 nexl,

Now we define the operator 4 as the follows.
Definition 3.5. Let § be the dual operator of D : L2(Q, &, P) = L*(Q, &, P; H).

The operator § is called the Skorohod integral. We remark that the Skorohod integral can be
regarded as an extension of the stochastic integral (Ité integral).

Let L be the Ornstein-Uhlembeck operator on L2(§2, &, P) associated with W. There are some
ways to define the Ornstein-Uhlembeck operator. For example, in [9] the Ornstein-Uhlembeck operator



is defined by using Wiener chaos expansion. On the other hand, in [13], first we define the Ornstein-
Uhlembeck semigroup by using the explicit transition semigroup, and the Ornstein-Uhlembeck opera-
tor is defined by the generator of the Ornstein-Uhlembeck semigroup. We omit the precise definition
of L here, and only remark that the domain of L inchudes P and L is characterized by

(3.2) LF = 80 f(W(h1), W(ha), ..., W (ha))(has ) et
ij=1
n
= > AF(W (e}, W(ha), .., W (ko)W ()
i=1
where F is the random variable expressed as (3.1).
The following propositions hold.
Proposition 3.6. §D = —L,
Proposition 3.7. For f € H®® LL,(f) = —nl,(f).

We use these facts in the proofs of the fourth moment theorem and the Stein’s bound.

4 The fourth moment theorem

In this section, we give the version of the fourth moment theorem given by Nualart and Orbiz-Latorre
[101.

First we define the contraction of functions. For f € L*(TP, %P, u®®), g € L*(1T9, %9, u®?) and
r==12...,min{p,q}, we define f ® g € L2{TP+9 FOF+a BP0} gpnd
f®.g¢€ L2(Tp+q—2r’@®p+q—2r,”®p+q—2r) by

(f & g)(tl, tz, . ,tp+q)
= flt1ta, 0 3p)g(pt 1y tpszs oo Eprg)s
(f Br g)(ilst% v =tp+q—-2r)

= j; f(tlxtm veuylpr,81,82,.. ., Sr)g(tp—'r+1at;p—r+2s vorybprg—2r, 81,82, ... :s'r)
x u®"(ds1,dsz, - . ., dsy),

respectively. We call the operation (f,g) — f ®; g is called the contraction of f and g of order 7.
Since f ® g can be regarded as f ®, g with + =0, we define f®og by f®g.
The tensor product f ® g and the contractions f ®, g are not always symmetric even if f and g
are symmetric. We denote the symmetrizations of f ® g and f ®, g by f®g and f®,.g, respectively.
By using contraction we can calculate the product of fwo random variables in some levels of Wiener
chaos as follows.

Proposition 4.1. Let f € L*(u®P) be symmetric and g € L?(u1). Then,

(41) L) (g) = Ips1(f ® g} + pIp-1(f ®1 9)-
The proposition 4.1 is extended as follows.

Proposition 4.2. Let f € L*(u®?) and g € L?(u®7) are symmetric. Then,

(1) B(N(e) = ZZZ” (2) (1) bra-antrena)



Note that Proposition 4.2 gives the explicit information of the Wiener chaos expansion of the
product of two random variables in some levels of Wiener chaos, The proposition is crucial to prove
the fourth moment theorem. In the proof of Proposition 4.2, complicated calculation in combination
is needed.

By using Proposition 4.2, we have the fourth moment theorem which is the version given by Nualart
and Ortiz-Latorre [10] as follows.

Theorem 4.3. (The fourth moment theorem) Consider a sequence {Fy, = L,(fx)} of square integrable
random variables in the n-th Wiener chaos. Assume that

. P .
o Jim BIF] = lim i fillfon = 1.
Then, the following statements are equivalent.

(i) {Fr = I.{f1)} converges to the standard normal law in distribution as b — co.

(ii

)

) limpoyeo BIFR] = 3.

(iil) limpeco [|f5 @1 fullgonn-n =0 forl=1,2,...,n— 1.
)

(iv) [[DFyll% converges to n in L2 as k — oo.

Multidimensional case of the fourth moment theorem is considered in [12], and [10]. In [6] the
fourth mornent theorem with respect to the centered Gamma distribution is also cbtained.

5 Stein’s method and Application of Malliavin calculus

Charles Stein considered in order to estimate the reminder term of the central limit theorem (see
[14]). He prepared the ordinary differential equation associated with the standard normal distribution
satisfies, and obtained a bound of the reminder term by using the solution to the equation. The
equation is called Stein’s equation, and the method to obtain the bound is called Stein’s method.
The large deviation principle is also well-known as a method to obtain the convergence rate of the
central limit theorem (or the law of large numbers.) The large deviation principle has advantages in
analysis to Stein’s method, because the large deviation principle is related to the spectral analysis.
On the other hand, Stein’s method has advantages in computation and in practice, because the bound
of the reminder term is obtained by explicit calculations. By using Stein’s method, one can estimate
the distances between the standard normal distribution and other distributions, where the distances
mean, for example, Kolmogorov distance, Wasserstein distance, and total variation distance.

First we give the detail of Stein’s equation and Stein’s bound. Let Z be a random variable with
the standard normal distribution and A be a measurable function on R such that E{|Rh{Z)|] < .
Stein’s equation associated with k& and Z is

(5.1) haz)— EIMZ)] = f'(z) —zf(z), z€R

The solution f to (5.1) is obtained explicitly as follows:
€T
(5.2) Flz) = o3+ f (hly) — ER(Z)]) e~ 4 dy, = eR.
-
By using (5.1) and (5.2), the following proposition holds.

Proposition 5.1. (i) Let X be a random variable. Then, X has the standard normal distribution
if and only if,
Ef(X) - Xf(X)] =0

for every confinuous and piecewise differentiable function f satisfying E[|f'(Z)] < oo.



(i) If h(z) = L{—oo,z) () where z € R, then the solution f to (5.1) exists, f is piecewise continuously
differentiable, || fllee < v27/4, and || fjle < 1.

(iii) If h is bounded by 1/2, the solution f to (5.1) exists, [ is differentiable olmost everywhere,
I lleo < v/7/2, and || Flloo < 2.

(iv) If h is bounded and absolutely continuous, then the solution f to (5.1) ewists, f is bounded
and twice differentiable, ||f|loa < /7/2||h(y) — BR{ZD) o, I < 2|R(y) — E[WMZ)]]co, and
15 lloe < 2/|~"fico-

(v) If h is absolutely coniinuous and the derivative is bounded, then the solution f fo (5.1) exists, f
is twice differentiable, [[f'loc < ||A'|loo, and || £"]loe < 2{iA’l|oo-

The proofs of the statements in Proposition 5.1 are found in the references in [6].

By using {(5.1) and the bound in Proposition 5.1, we can consider the estimate for the distances
between the standard normal distribution and other distributions.

Consider a distance between distributions of random variables F and G on R defined by

(5.3) du(L(F), L(G)) = sup [ELf(F)] - E[f ()],

where # is a set of functions on B. There are many distances between distributions defined by (5.3).
For example, by taking H = Fiol := {[(~cc,z] : 2 € R}, one obtains the Kolmogorov distance; by

taking M = Fw = {f : ||l £ 1}, where || - {|. denotes the usual Lipschitz seminorm, one obtains
the Wasserstein (or Kantorovich-Wasserstein) distance; by taking H = Fry = {f : ||fllgr < 1},
where || - [lsz = |- liz + || - ||o0, One obtains the Fortet-Mowrier {or bounded Wasserstein) distance;

by letting H = Fpy be the collection of all indicators Iz of Borel sets, one obtains the total variation
distance. We denote the Kolmogorov distance, the Wasserstein distance, Fortet-Mourier distance and
the total variation distance by dia (-, -}, dw(:,*), dem(, ) and drv (-, ), respectively.

The following theorem is the result on the estimate of the distances, which is obtained by Nourdin
and Peccati {6].

Theorem 5.2. (Theorem 3.1 of (6]} Let Z has the standard normal distribution, and F € D12 such
that E[F] = 0. Then,

dw(F,Z) < B [(1 - (DF,-DL™'F))*]'"*,

dru(F, Z) < E[(1 - (DF,-DL™' F))?) ",
If, in addition, the law of F' is absolutely continuous with respect to Lebesgue measure,
diol(F, 2) < B [(1— (DF, DL F)g)?] "2,
drv(F, Z) < 2B [(1 - (DF,-DL R )22,
On the other hand, by using Proposition 4.2, we have the following Proposition.

Proposition 5.3. (Proposition 8.2 of [6]) Let n=2,3,4,..., and F = I,{f) where f € H®". Then,
(DF,—DL~*F)yg =n"Y||DF|%, and

E[(1 - (DF,-DL'F)y)*]

64)  =EB[1-n"DFR)]
n—1 4

65) ==l + 0 -2t (P71 ) B Ao
- e

(5.6) < (1l flBen)® + 02 3 (2n— 20} [(r — 2 ( "l ) 1F @ lsorcnmn.



By using Theorem 5.2 and Proposition 5.3 we can simplify some parts of the proof of the fourth
moment theorem (Theorem 4.3).

The case of the centered Gamma distribution is also considered in [6]. They prepared Stein’s
equation associated with the centered Gamma distribution, and obtained the bound of convergence
to the centered Gamma distribution by similar way to the case of the standard normal distribution.

6 Further works on the fourth moment theorem and related
topics

In this section we introduce some further studies around the fourth moment theorem.

6.1 The case of the centered Gamma distribution

An analogue of the fourth moment theorem to the centered Gamma distribution is obtained by Nourdin
and Peccati [5]. The statement is as follows.

Let v > 0 and G(r/2) be a random variable having the Gamma distribution with parameter »/2,
t.e. G(v/2} is a random variable with density function g(z) = %E(om): where T is the Gamma

function. Consider a random variable F(r) defined by
P{v) =2G(w/2) ~ v
The following theorem is an analogue of the fourth moment theorem with respect to F(v).

Theorem 6.1. Let n € 2N and 4

" o2 (7 )

Consider a sequence of random variables Gy, = I,{g.) where g € H®™ and asswme that

Cn

i 2 = H t . 2 = .
k[ﬁ];lo E[G%] kango || grl|fron = 2w
Then, the following conditions are equivalent.
(i) Gy converges to F(v) in distribution as k — oo.
(ii) limjoeo (E[GE] — 12B[G}]) = 1207 — 480,
(iii) ||DGkl% — 2nGy converges to 2ny in L*(P) as k — oo.

(iv) 1img—yoo ||g6®n /20t — Cngkllzren = 0 and limg oo g ®r grllgesm-n =0 forr =1,2,...,n—1
ezeept r = nj2.

In 6], they discuss the case of the centered Gamma distribution in a similar way to the case of the
standard normal distribution, and Stein’s equation with respect to the centered Gamma distribution
is obtained. We omit the version of Stein’s equation in this note, because more general version of
Stein’s equation is in Section 6.2,

6.2 Generalization of Stein’s bound

As we have seen in Theorem 5.2, by applying Malliavin calculus to Stein’s equation we obtain the
estimate of the distances between distributions. The cases of the standard normal distribution and
the centered Gamma distribution are considered in [6], and more general argument is also mentioned
as a conjecture in {6]. After Nourdin and Peccati {6], in [4] & general argument Is constructed in view
of the invariant measure of one-dimensional stochastic differential equation.



Let 8 be the interval ({,u) (—oo <1 < ¢ < o0) and u be a probability measure on S with a density
function p which is continuous, bounded, strictly positive on 3, and admits finite variance. Consider
a continuous function b on § such that there exists k& € (I,u) such that b(z) > 0 for = € ({, k) and
b(z) < 0 for = € (k,u), bp is bounded on S and

flu b{z)p(x)dz = 0.

Define
a(a) = LI VORI
‘ p(z)

Then, the stochastic differential equation:

, TES

dXt = b(.Xf,)dt Ry a(Xt)th, t > 0

has 2 unique Markovian weak solution, ergodic with invariant density p (see [1]). ,
TFor f € Cp(9) (the set of continuous functions on § vanishing at the boundary of S}, let my =
ﬁ" flz)p(z)de and define Gy by, for every z € 5,

3@ = s | ") — m)p)dy

3= (D) f 2 i)y, wes,

a(y) a(z)
Then, gr{xz) := f(;" gy (y)dy satisfies that f ~ my = Agy and

Then, we have

61) £(z) — BIFOO] = 2o(@);(@) + b2y (@)

where X is a random variable with its law g. The equation (6.1) is a generalized version of Stein’s
equation.

To obtain the estimate of the distances between the distribution associated with p(z)dz and other
distributions, we need the bounds for the functions §; and §}. Since we have the explicit form of gy ,
the following propositions are obtained.

Proposition 6.2. Assume that o is uniformly posiftive and there exist I',v' € ({,u) such that b is
non-tncreasing on {{,I') and {v',u). Then we have

[1F5liec < Cillflloo and ||a'§f”oo < Collflleor  f € C5°(S),

where Cy and Ca are strictly posilive constants.

Proposition 6.3. Assume that if v < oo, there ewists v’ € {{,u) such that b is non-decreasing
and Lipschitz continuous on [v',u} and Hminfy ., a(z)/(u — z) > 0; if v = oo, there evists v’ €
({,u) such that b is non-decreasing on [v',u) and liminf;, a(x) > 0. Similerly, essume that if
I > —oo, there exzisis I' € (I,w) such thet b is non-increasing and Lipschitz continuous on (1,1'] and
liminf, . a(x)/ (2 — 1) > 0; if | = —oo, there exists I' € (I,u) such that b is non-decreasing on (]
and liminf,_,; a{z) > 0. Then we have

13¢)ls0 < Calllflleo + 11lloc):  f € CE(S),

where Cy 13 a constant.

The estimates in Proposition 6.2 are sufficiently good when e is uniformly bounded and strictly
positive, However, when a degenerates at the boundary of 5, we need Proposition 6.3. We remark
that in Proposition 6.3 the derivative of §; is dominated by the sum of ||f]lec and ||f/]|ce- In view of



this fact it seems true that the case that o is uniformly positive and the case that o is degenerate are
very different. In fact, the result obtained in the case of the standard normal distribution is different
from that obtained in the case of the centered Gamma distribution (see Sections 5 and 6.1}.

By using the generalized Stein’s equation (6.1) and Propositions 6.2 and 6.3, the estimate of the
distances between the distribution associated with @ = p(x)de and other distributions is obtained in
the same way as 5.

Theorem 6.4. (i) Let d be the Fortet-Mourier distance. Assume the conditions in Proposition 6.3.
Then,

(L), 1) < CB [

1

30(Y)+ (D=L (4() BB}, DY |
+CEDBY)]|, Yeb?

where C is a positive constant and L{Y) is the law of Y.

(ii) Let d be the Fortet-Mourier distance, the Kolmogorov distance or the total variation distance.
Assume the conditions in Proposition 6.2 and a is uniformly positive. Then,

LAY ), 1) < OF || 30(¥) + (D=E)" (5¥) ~ BB}, DY)

+CERY)|, YeD?
where C is a positive constant.
The bounds in Theorem 6.4 are optimal in the following sense.

Theorem 6.5. A random variable Y € DY? with its values on § has probabilily distribution p and
satisfies that H(¥) € L2(Q) if and only if E[B(Y)] =0 and

E [%a(Y) + (D(—L)-ib(Y),DmH’ Y} =0,
In Theorem 6.4, there is the term:

(6.2) E [

300+ (D(-L)™ (oY) ~ BRIV, DY

Generally it is difficult to calculate this term. However, if ¢ and b are given explicitly, and if ¥V is
expressed as an explicit function of a Gaussian random variables, then (6.2) can be calculated by using
the Ornstein-Uhlembeck semigroup and its resolvent (see [4] and [8].)

6.3 Other works

There are many other works on this topic.

The analogue in free probability theory has been concerned in [3}. In free probability theory, we
also have the analogue of Wiener chaos (so-called Wigner chaos or free chaos). In [3], the analogues
of the fourth moment theorem and Stein’s hound with respect to the semicircular law are obtained.

In [2], the original Stein’s method is applied to the theory of spin glasses. In the paper, the
Thouless-Anderson-Palmer equations of the Sherrington-Kirkpatrick model is obtained. Moreover,
the upper estimate of the convergence to the Thouless-Anderson-Palmer equations is also obtained by
using the original Stein’s method. Like this, the applications of Stein’s method to statistical mechanics
are also considered and some results have been obiained recently. We remark that the argument in
the paper is away from the fourth moment theorem and the combination of Stein’s method and the
Malliavin calculus.
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Integrals along rough paths via fractional calculus

Yu Ito

Graduate School of Informatics, Kyoto University

In |2}, Hu and Nualart introduced an alternative approach to the rough path analysis, and
it was based on the fractional calculus. This approach has produced the integral along 8-Holder
continuous functions of order 8 € (1/3,1/2) by combining the ideas of the rough path analysis
and the techniques of the integration by parts formula in terms of the fractional derivatives
introduced by Zahle ([3]). This integral has given a new tool to study the differential equations
driven by S-Holder continuous functions of order 8 € (1/3,1/2); for example a study on the
stochastic differential equations driven by the fractional Brownian motion with Hurst parameter
H e (1/3,1/2) is found in [1].

One of the interesting points of this approach is that the integral is given by way to the
usual Lebesgue integrals based on the fractional derivatives, and the definition does not require
any approximation arguments, unlike the integrals in the context of the rough path analysis,
namely the rough integrals. It is expected that the further development of this approach would
provide a sophisticated access to the fundamental theory of the rough path analysis. Therefore,
we arrive at the natural question to consider next, that is whether this approach is valid for any
8 € (0,1]; in particular, it drives us to the following question.

QQuestion. Can the rough integrals be expressed as usual Lesbesgue integrals based on the
fractional derivatives for any 8 € (0,1]7

In this talk, we will give an affirmative answer to this question, and produce the integral along
B-Hbélder rough paths based on the fractional derivatives for any 8 € (0,1]. It is a generalization
of the preceding study of [2] in the following sense. This integral is a natural generalization of
the Riemann—Stieltjes integral along smooth curves, and a continuous functional with respect to
the g-Holder topology under suitable conditions on the integrand. Consequently, we will obtain
the following answer to the above question.

Answer. The first level path of the rough integrals along the geometric 8-Holder rough paths can
be expressed as usual Lesbesgue integrals based on the fractional derivatives for any g € (0,1].
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Functional limit theorem for processes
pieced together from excursions

Kouji Yano (Kyoto University)*

A sample path of a process can be constructed by being pieced together from excursions
away from a prescribed point a. It&’s excursion theory assures that, for a strong Markov
process where the point o is regular for itself, the point process of excursions is Poisson
and hence is characterized by its characteristic measure called the ezcursion measure.

In [1], the author obtained some homogeneity results for jumping-in diffusion processes.
The proof was based on the construction of a sample path from excursions and the func-
tional convergence of the suitable scaling for the pieced process was proved via that for
excursions.

In this talk, we provide a more general framework for proving convergence of the pieced
process from that of excursions. We assume that the excursion measures considered are
realized as pullback of a common measure by measurable maps and those maps converge
in the function space. We then prove convergence of the pieced process in law on the
Skorokhod space.
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Variance mixture and subordinator
in free probability

Noriyoshi Sakuma

Abstract

First, we consider infinitely divisibility of free counterpart of variance mixture
of normal distribution. From this problem, we find a class of the freely infinitely
divisible distributions that appear as the laws of free subordinators play an impor-
tant role to investigate infinite divisibility. We call this class free regular infinitely
divisible measures. We prove that the class of free regular measures is closed un-
der the free multiplicative convolution, {-th boolean power for 0 < £ < 1, t-th free
multiplicative power for ¢ > 1 and weak convergence. In addition, we show that
a symumetric distribution is freely infinitely divisible if and only if its square can
be represented as the free multiplicative convolution of a free Poisson and a free
regular measure. This gives two new explicit examples of distributions which are
infinitely divisible with respect to both classical and free convolutions: chi-square
and F(1;1)-distribution.



APPROXIMATING ROUGH STOCHASTIC PDES

JAN MAAS

We study a class of vector-valued equations of Burgers type driven by a
multiplicative space-time white noise. These equations are of the form

(1) Bpu = v Fu + F(u) + Glw)dyu + 0(u) €,

where the function v = u(t, z;w) € B is vector-valued. We assume that the
functions F': R® — R™ and G, 8: R™ — R™" are smooth and the products
in the terms G{u)dyu as well as in 0(w)€ are to be interpreted as matrix
vector multiplication. The noise term £ denotes an R"-valued space-time
white noise and the multiplication should be interpreted in the sense of Itd
integration against an L2-cylindrical Wiener process.

In the case where & is the gradient of a function G the equation (1) is
classically well-posed. The definition of weak solutions and their construc-
tion uses the conservation law structure of (1): The nonlinearity is rewritten
as

G(u)dpu = 8,G(u),

and the derivative can be treated by integration by parts. However, several
seemingly natural approximation schemes fail to produce solutions of (1),
but converge to different limit equations in which extra terms may appear.

In the case where G is not a total derivative it is not even clear how
to make sense of (1}. The solution does not have the regularity required
to make sense of the nonlinearity. We use rough path theory to resolve
this issue. Weak solutions can be defined by testing against a smooth test
function ¢ and defining the term

T
f o(z)G(ult, z))0pult, ©)de
-7
as a rough integral.

We study approximations to (1) of the form

dus = (UAE'U:g + F(UE) + G(us)Daug)dt + g(us) HEdVV)

for a large class of regularisations A, D, and H,. We show that the wu,
converge to a process @ that solves an equation similar to (1) with an extra
term

~ A B() VG (u) 67 (u).

This term is the local spatial cross variation of u and G(u) and can be
interpreted as a spatial [t6-Stratonovich correction. The constant A depends
on the specific choice of the approximations and can be calculated explicitly.
We obtain a rate of convergence of £1/6,
This is joint work with Martin Hairer and Hendrik Weber,
1
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Asymptotics of quantum walks on the line

Graduate School of Mathematics, Nagoya University
Tatsuya TATE*

The notion of quantum walks, often called discrete time quantum random walks, was introduced by
Aharonov-Davidovich-Zagury (JADZ]) in 1993 as a quantum analogue of the classical random walks,
and re-discovered in the area of computer science. In particular, Ambainis-Kempe-Rivosh ([AKR])
utilized two-dimensional quantum walks to improve Grover’s quantum search algorithm. In the tall,
various local agymptotic formulas of transition probabilities of quantum walks on the one-dimensional
integer lattice, obtained in [3T], will be given. In the present article, we just mention one of the
formulas, which is a limit formula of a large deviation type. To be precise, let us give a definition of
guantum walks on the one-dimensional integer lattice. The quantum walks we consider in the talk is
defined by a (special} unitary matrix,

~-b @

a 0 0 b
A=P4+Q, Pz(_g 0), Qm(o 6)'

Let £2(Z) ® C? be the Hilbert space of square summable functions on Z with values in C? whose inner
product is given by

Am(a— b), a,beC, |af+ b2 =1,

and its decomposition,

(f,9) =D (f(@),g(x))c2, figef(T)®C?,

zeZ

where (-, )¢z denotes the standard inner product on C%. For any u € C? and z € Z, define §; ® u €
2(Z) @ C* by

v (y=u2),
dz @ u){y) =
Then, the vectors, 6, ® e; (i = 1,2, ¢ € Z), where {e1, ez} is the standard orthonormal basis in C2,
form an orthonormal basis of £2(Z) ® C*. The unitary evolution, U, of the quantum walks on Z is a
unitary operator on ¢2(Z) ® C? defined as

U=Pr7' +Qr,

where 7 is the shift operator on £2(Z) ® C? defined by 7(8; ® u) = 6341 ® u. The operator U is indeed
a unitary. operator, and hence the function

(i z) = [UM (S @ @) (@)[22, z€Z

defines a probability distribution on Z supported on [—n,n] for any unit vector ¢ in C? and positive
integer n, which we call the transition probability of the quantum walk I7. The behavior of p,(p; x)
as n — oo is one of main topics in the study of quantum walks. Indeed, as the following Figure 1f
shows, it is drastically different from the behavior of transition probabilities of classical random walks.
In Figure 1, the ‘wall’ is located at z/n ~ :k|a}, where o is a component of the given unitary matrix
A. The behavior of p,(p;z) heavily depends on the ‘normalized’ position z/n according as

“E-mail: tate@math.nagoya-w.ac.jp
tRigure 1 is due to Dr. Takuya Machida in Meiji University.
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Figure 1: Probability disctribution and its weak-limit distribution

(1) z/n is inside the interval, (—|al, |a|),
(2) z/n stays around the ‘wall’, say, z/n ~ *£|a|, or
(3) z/n is outside the interval, say, |z/n| > |a.

Our analysis in [ST] gives precise asymptotic formulas in each region (1) — (3). For instance, a corollary
to our results is stated as follows.

Corollary Let € € R satisfy |a| < |€| < 1. Suppose that a sequence of integers, {zn}, satisfies
o =nE+0(1) (n— o).

If pu(p; 33) # O for every sufficiently large n, we have the following limit formula of a large deviation
type,

lim lpn(go;a:n) = —Hg(¢),

n—0oo 7

where the function Hg(€) is given by

Ho(£) = 2l¢|1og (Ibllé] + /& = [al?) — 21og (Jb] + vEZ = a) + (1 - [¢]) log(t — £2) — 2|¢|logal-

In the talk, after an explanation of backgrounds, properties and known results, such as a weak limit
formula due to Konno ([K]), on the quantum walks on Z comparing with classical random walks, our
main results on the asymptotic formulas of p,(i;z) are introduced. According to our results, the
asymptotic behavior of pn(p;z) has indeed a quantum mechanical nature. The resemblance of the
asymptotic behavior of p,(p; x) and that of the Hermite functions will be pointed out by introducing
the Plancerel-Rotach formula on asymptotic behavior of the Hermite functions.
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Exponential convergence of Markovian semigroups®

Seiichiro Kusuoka  (Tohoku University)
Ichiro SHIGEKAWA (Kyoto University)

1 Hypercontractivity and the exponential convergence

Let (M, 2, m) be a measure space with m{M) = 1. Suppose we are given a Markovian
semigroup {T;} in L*(m). We denote its dual semigroup {7;} and assume that {7}'} is
Markovian and 7,1 = 1 and T}1 = 1. {1}} and {T}'} define strongly continuous semigroups
in L?{m) (1 < p < oo) naturally.

We are interested in the following ergodicity:

Lif = ({f) ast— o0

To be precise, define the index Yp—q DY
——
Vpsq = = lim T log [|7; ~ m|p—sq- (1)

Here m denotes an operator f — m(f) = [, fdm and | ||p», denotes the operator norm
from I? to LY.

We recall that {T}} is called hyperbounded if there exist K > 0, r € (2,00) and C > 1
such that

1T fllr < Cllfllas VS € L*(m).
Then we have
Theorem 1. The followings are equivalent to each other:
(1) {T;} is hyperbounded.
{2) Yposq = 0 for some 1 <p < g < o0.
{3) Ypog = Vo2 for allp, g € (1,00},
Also {7} is called hypercontractive if there exist K > 0 and r € (2, oc) such that
I Txfll: < 1 fll2s YF € L2(m).
Then we have
Theorem 2. The followings are equivalent to each other:

(1) {Ti} is hypercontractive.

*October 24-26, 2012, “Stochastic Analysis and Related Fields” in Nagoya University



(2) Yprq > 0 for some 1 < p < g < co.

(8) Ypmsq =722 > 0 for all p, ¢ € (1,00).

Further if we assume that the generator 2 of T} is normal, we have the following p-
independence of the spectrum.

Theorem 3. Assume 2 is normal. Then o(2,), the spectrum of %, is independent of p
(l<p<oo)

2 Example of LP-spectrum that depends on p

We give an example that the spectrum depends on p. Let M = [0, 00) and m(dz) = v(dz} =
e~%dz. The Dirichlet form in L?(v) is given by

s00)= | F@Ep)
0,00
The generator is

&4

T d? dz
with boundary condition f'(0) = 0.
Theorem 4. For p = 2, we have
1
o(~20) = {0} U[7,00).
Theorem 5. For 1 < p < 2, we have
(i) op(~2) = {0} U {z +iy; v,y €Ry® < (2 -1)*(z — "’;—31)}
(it) oe(—2) = {z +iy; @,y R Y = (2 -1)*(a — )}

(iii) p(—2) = {z +iy; 5,y € Ry* > (2 - 1)’(z — Z3)}

Theorem 6. For p > 2, we have

(i) op(—21) = {0}

(ii) oo(—) = {z +iy; 2,y e Ry < (E-1)(z - 25:—1)}
(iii) oo(~2%) = {z +iy; 7,y € R,y? = (2 - 1)z - Z7)}

(i) p(—2) = {z +iy; 2,y €Ry® > 2 -1)%(a - Z51)}



Historical Superprocess Related to Random Measure

2 E LBIECATBET 5 e X MY A LiEEE
I. DOKU (Saitama University) HET B FREABEEED

1. Superprocess with Branching Rate Functional
We introduce the superprocess with branching rate functional, which forms
a general class of measure-valued branching Markov processes with diffusion as
a underlying spatial motion. We write as (i, f} = [ fdu. For simplicity, Mp
= Mp(R%) is the space of finite measures on R%. Define a second order elliptic
differential operator L = 5V -aV +b-V, and a = (as;) is positive definite and
we assume that ay, b € CM = CY(RY). Here C'# indicates the totality of all
Hélder continuous functions with index € (0 < ¢ < 1), allowing their first order
derivatives to be locally Holder continuous. {£,1l,,} indicates a corresponding
L-diffusion. Moreover CAF stands for continuous additive functional. Let K?
(with ¢ > 0) denote the Dynkin class of locally admissible CAF’s with index
g. When we write Cp as the set of bounded continuous functions on R, then
Ct is the set of positive members in Cp. The process {X,P,,} is said to be a
superprocess with branching rate functional K or simply (L, K, p)-superprocess if
X is a continous Mpg-valued time-inhomogeneous Markov process with Laplace
functional P e~ Xt#) = g=0v&t) for 0 € s <, p € Mp and ¢ € Cf. Here v is
uniquely determined by the log-Laplace equation
&
e o0(8) = vis,a) + o | v*(r, &) K(dr), 0<s<t, acR: (1)

&

2. Associated Historical Superprocess

The historical superprocess was initially studied by Dynkin (1991} (cf. Dawson-
Perkins, 1991). C denotes the space of continuous paths on R* with topology of
uniform convergence. To each w € C and ¢ > 0, we write w' € C as the stopped
path of w. We denote by C! the totality of all these paths stopped at ¢t. To ev-
ery w € C we associate the corresponding stopped path trajectory @ defined by
Wy = wh (t > 0). The image of L-diffusion w under the map : w +— @ is called the
L-diffusion path process. Moreover, we define C; = {(s,w) : s € Ry, w € C°} and
we denote by M(C}) the set of measures n on C} which are finite, if restricted
to a finite time interval. Let K be a positive CAF of £&. {X,P,,} is said to be
a Dynkin’s historical superprocess if X isa time-inhomogeneous Markov process
with state X, € Mp(CY), ¢ > s, with Laplace functional P, e~ Xew) = g=(mvlst)

1



for 0 € s €, p € Mp(C®) and p € C; (C), where v is uniquely determined by
the log-Laplace equation

i
Hs,mua‘ao(‘ft) = U(S: ws) - Hs,ws ,02(7., Ev‘)ff(dr): 0<s<t, ws €C (2)

g

We call this X an associted historical superprocess in Dynkin’s sense.

3. Superprocess Related to Random Measure

Suppose that p > d, and let ¢,(z) be the reference function. C denotes the
space of continuous functions on B¢, and define C, = {f € C': |f| € C-¢p, ICs >
0}. We denote by M, the set of non-negative measures  on R?, satisfying (i, @)
< oo. It is called the space of p-tempered measures, We define the continuous
additive functional I, of & by K, = (1, 0.(&,))dr for n € M. Then X7 = { Xt >
0} is said to be a measure-valued diffusion with branching rate functional £, if
for 4 € Mp, X satisfies the Laplace functional IF",?,ﬂe‘(X?"") = ¢~ Wl for € Cy,
where the function v is uniquely determined by

00(8:) = v(s,a) + e f t &) Ky(dr), (0<s<taeRY).  (3)

Assume that d =1 and 0 < v < 1. Let A = A{dz) be the Lebesgue measure on R,
and let (-y,P) be the stable random measure on R with Laplace functional

e~ (1%} = exp {— /(p”(:c),\(dsc)} , weCCy. (4)

Let p > v~1 in what follows. We consider a positive CAF K,y of £ for P-a.a.
w. So that, thanks to Dynkin’s general formalism, there exists an (L, K, u)-
superprocess X7 when we adopt a p-tempered measure v for K, instead of n, as
far as K, may lie in K? (3¢ > 0).

4, Historical Superprocess Related to Random Measure
As for the historical superprocess associated with the superprocess X7 related
to random measure, we can prove the following,

THEOREM. (Main Result) Let K., be a positive CAF of § lying in the Dynkin class
K. Then there exists  historical superprocess X7 = { X7, H3;/ w820, u€ Mp(C)}
in the Dynkin sense.” In fact, X7 is a time-inhomogeneous Markov process with state
X7 € Mp(T", t > s, with Laplace functional P}, exp{—(X7, )} = e~ for
0 < s <t ue Mp(C) and ¢ € CGH{C), where v is uniquely determined by the
log-Laplace equation

t -~ e
L0, 0(&) = v(s,ws) + o, [ V(&) K (widr), 0<s<t, w,€C’ (B)

&



A Clark-Ocone type formula under change of measure for
Lévy processes

Ryoichi Suzuki*

The Clark-Ocone formula is an explicit stochastic integral representation for random variables in terms
of Malliavin derivatives that turns to be central in the application to mathematical finance. In this talk,
we introduce a Clark-Ocone type formula under change of measure for Lévy processes with L2-Lévy mea-
sure ([5, 6]). As an application of the thecrem, we are also preparing a paper concerning the local risk
minimization problem ([1]}.

Throughout this talk, we consider Malliavin calculus for Lévy processes, based on, [4] and [2]. Let
X = {Xit € [0, T|} be a centered square integrable Lévy process with representation

't .
Xe=oWi + / j zN{ds, dz)
o JRg

on a complete probability space (Q, 7, P; {Fi }ep,77), where {Fi}ejo,r is the augmented filtration gener-
ated by X and ¢ is a constant number. Furthermore, we assume that {W;; t € [0, T]} is a standard Brownian
motion and that N is a Poisson random measure independent of W defined by

N{A,£) = Y 14(AX:), A € B(Ro), AXs 1= Xs — Xs,

s<t
where Ry := R\ {0}. In addition, we will denote by N{dt,dz) = N{dt,dz) — v(dz)d} the compensated
Poisson random measure, where dtv(dz) = A(dt)v(dz) is the compensator of N, v(:) the Lévy measure of X
and A the Lebesgue measure on R, Since X is square integrable, the Lévy measure satisfies flRO z2v(dz) < oo
Now we consider a finite measure q defined on [0, T] x R by
E)=c? [ dt+ [ 2v(dz)dt, EeB(0,TIxR),

oE) = [ di [ Polda, E€B(OTIXR)

where E{(0) = {t € [0, T];{£,0) € E} and E' = E — E(0}, and a random measure Q on [0, T] x R by
Q(E) = U/E{U) dW(H) + fE 2N(dt,dz), E € B([o, T} x R).

Let L%—Jq‘" (R} denote a set of product measurable, deterministic functions f : ([0, T] x R)}" — R satisfying

1A%, 7= fioman (22D ) Pt ) g, ) < oo

Forn € Nand fy € L%qu" (R), a multiple two-parameter integral with respect to the random measure Q
can be defined as

Iy (fn) = ﬁEO,T}xR)" fu((fl: z1),- -+ (b, ZJI))Q(dtlr dzl) v Q(dfnf dzu)-

In this setting, we introduce the following chacs expansion (see Theorem 2 in [3], Section 2 of [4]}.

*Department of Mathematics, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama, 223-8522, Japan, reicesitm@gmail.com



Proposition 1 Any F-measurable square integrable random variable F has a unigue representation

F= i L(fa), P—as.

n={
with functions fr € L’:",.rq,”(R) that are symmetric in the n pairs (t;,z;),1 < i < n and we have the isometry

o0

E[F? = Y n!| full?
[F°] r;} Ifullzz,,

We next define the follows:

Definition1 1. Let DI?(R} denote the set of F -measurable random variables F € L*(IP) with the representa-
tion F = Yoo In(fu) satisfying

= 2
! o0,
ngi nnl]| full L%,'q‘" <

2. Let F € DY2(R). Then the Malliavin derivative DF : (1 x [0, T] X R — R of a random variable F € DY*(R)
is a stochastic process defined by

DizF = Y nlya(fu((t2),+)), validforg—ae. (£2) € [0,T] xR, P ~ a.s.
FES S

3. Let ILY2(R) denote the space of product measurable and TV -adapted processes G : O x [0,T] xR — R
satisfying

2
E Ugo,nxmlG(s,x)i q(ds,dx)] <o,

G(s, x) € DY2(R),g—a.e. (5,x) € [0, T] x R and

E {/;10 TIxRY: |Dt2G(s, x)Pq(ds, dx)q(dt, dz)] < o0,

4. Let ]L(lj'2 (R) denote the space of measurable and I -adapted processes G 1 QO % [0, T] — R satisfying

E [ /EO’T} |G(s)[2ds] <,

G(s) € D¥(R), s € [0, T}, ae. and

Dy.G(s)}? :
E [/[O'T]Xm ‘/;0’T1| 12G(s)} dsq(dt,dz)} < o

5. Let H"_.%'Z(IR) denote the space of product measurable and F -adapted processes G : (1 x [0, T} xRg — R
satisfying

2 .
E [ fmmo G, )| v(dx)ds] < o,

E [( fmmo GG, x}Iv(dx)ds) 2} <o,



G(s,x) € DY2(R), (s,x) € [0, T] x Ry, a.e.,

2
E [ jm]m ( ][D’T]xmo |Df,zc(s,x)|u(dx)ds) q(dt,dz)} <o
and
E [jI‘O,T‘]xIR /[G,T]xERo EDt,zG(s,x)|2v(dx)dsq(dt,dz)] < 00,

Now, we assume the following,.

Assumption 1 Let 0(s,x) < 1,5 € {0, T}, x € Rg and u(s),s € {0, T|, be predictable processes such that
T
fﬂ fR {11og(1 — 8(s, x))| + 6%(s, x) }v(dx)ds < oo, as.,
G
T
fo u?(s)ds < o0, as.
Moreover we denote
t 14 t
Z() = exp (—f u(s)dW(s) — x f u(s)>ds —l-f f log(1 — 8(s, x))N(ds, dx)
0 2Jo 0 JRg
t
-{-fﬂ ‘/IR (log(1—@(s, x)) —l—6(s,x))v(dx)ds> LA €[0T
0

Define a mensure Q on Fr by
dQ(w) = Z(w, T)dP{w),
and we gssume that Z(T) satisfies the Novikov condition, that is,

E [exp G / " 2 (s)ds + / ! i (1= 0(s,) og{1 — (5, ) +46(s,x)}v(dx)ds)] <o,

Furthermore we denote ) 5
No(dt, dx) == 6(t, x)v{dx)dt + N(d¢, dx)

and
dWo(t) 1= u{t)dt + dW(t).

Second, we assume the following.

Assumption 2 We denote
- T 1 T
H(t,z) = exp (_fo zD;,zu(s)dWQ(s)—Ef (2D zu(s))?ds
T Dy z6(s,
+ fo fm U [sz,zﬂ(s,x)+log (1— %) (1-8(s,x )] v(dx)ds

T
Ng(ds, d .
+/0 fmo o(ds x))
Df06(5x~

K() —/ D ou s}dWQ(s)—i-/ flR T80 N o(ds, dx).

Furthermore, assutne that the following:

and



1. F,Z{T) € DYA(R), with (F + Z(T))? € L2(IP),
(F+ Z(T))(DyoF ++ DioZ(T)), 2(DrzF + D1z Z(T))? € LP(g x P),

2. Z(T)Diglog Z(T) € L2(A x ), Z(T}(e?P=1982(T) — 1Y € L2(v(dz)dtdP),
3. u(s)Dyou(s) € L2(A X P), 2u(s) Dy 1(s) + z(Dizu(s))? € L2(z%v(dz)dtdP), s-n.c.

4. log (1~ 222} & 12(v(dz)dtdP), 24752 & [2(A x P), (5,%) -a.e.
5. u,x 1log(1—8(s,x)) € LV*(R),

6. u(s)? € LL? and 6(s, x),log(1 — 8(s, x)) € LI (R),

7. and FH{t,z), H(t,z)Di.F € LY{Q), (¢,z) -a.c.

We next introduce a Clark-Ocone type formula under change of measure for Lévy processes.

Theorem 1 Under Assumption 1 and Assumption 2, we have

T
F = EglF|+c jo Eqg [D,,DP—PK(t)

}}_] )

T ) T .
+ /0 fJRo EqQ[F(H(t 2) — 1) +2H(t 2) D F|Fe- | No{dt, dz).
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Tunneling for spatially cut-off P(¢)o-Hamiltonians®

Shigeki Aida
Tohoku University

Let —L + V) be a spatially cut-off P(¢)z-Hamiltonian, where A = 1/h is a large positive
parameter. The operator —L is the free Hamiltonian, that is the second quantization operator
of vm? — A, where m is a positive number. The potential function V) is given by a Wick
polynomial

2 ) : 9(a)da, o)

Vi(w) = )\fR P (wﬁ)

where g is a smooth cut-off function and P(z} = Zﬁfl azz" is a polynomial hounded from below.
Formally, —L 4 + V) is unitarily equivalent to the infinite dimensional Schrédinger operator:

k

~Apay + AU (w/VR) - %tr(mz A2 on LA(IA(R), du) (2)

where dw is an infinite dimensional Lebesgue measure. The function U is a potential function
such that

Uw) = ifm'w’(m)zdm +frra (mTzw(m)z-l— s Plw(z)) : g(x)) dz

and Ayzg) denotes the “Laplacian”on L*(R, dz). Hence, by the analogy of Schrédinger operators
in finite dimensions, it is natural to expect that asymptotic behavior of lowlying eigenvalues of
the spatially cut-off P(¢)2-Hamiltonian in the semiclassical limit A — oo is related with the
global minimum points of I, In view of this, we consider the following assumptions.

Assumption 1. Let P be the polynomial in (1) and U be the function on H' which is given
by

2
= -1-[ h'(:u)zdm-l-f (ﬁh( )2+ P(K( ))g(m)) for h € HE. (3)
1/p ® \ 4
(A1) The function U is non-negative and the zero point set
Z:={heH' [UMR)=0}={h1,..., hn} (4)
is a finite set.
(A2) For all 1 < ¢ < n, the Hessian V?U (h;) is non-degenerate. That is, there exists &; > 0 for
each ¢ such that
2
Ulhi}(h,h) : ]h’ )dx —|—f (E;—h(a:)2 +P”(h,;(m))g(sc)h(m)2) dz
> 5,;[|hi|L2(R) for all h € HY(R). (5)

(A3) For all z, P(a) = P(—z) and Z = {hg, —hg}, where hg 5% 0.

*This talk is based on the paper, Tunneling for spatiaily cut-off P(¢}: Hamiltonians, Journal of Functional
Analysis Vol. 263 ne.9 (2012) 2689-2753.




Let (A} be the lowest eigenvalue of —L + V). The first main result is as follows.

Theorem 2. Assume that (Al) and (A2) hold. Let E{)\) = inf o(—L + V3 ). Then

I\li}n;.o E(N) = lgliiélnEi’ (6)
where
E;=info(—~L+ Q) (M)
and @y, is given by
Quw) = [ ul@ u@ds, wl@) = P (u(@)o(o) )
13

Remark 3. In the case of finite dimensional Schrédinger operators, there exist eigenvalues near
the approximate eigenvalues I5; when A is large. In Theorem 2, if E; < m -+ minj<i<n B;, then
the same results hold by the result of Hoegh-Krohn and Simon. However, if it is not the case,
it is not clear and they may be embedded eigenvalues in the essential spectrum. Under the
assumptions in Theorem 5, Fa(A) is an eigenvalue for large A.

Let
Eo(N) = inf {o(—L+ V) \ {E1(A\)}}.

We can prove that Ea(A) — E1(A) is exponentially small when U is a symmetric double well
potential function. The exponential decay rate is given by the Agmon distance which is defined
below.

Definition 4. Let 0 < T < oo and h,k € H(R). Let ACr;,(H(R)) be the all absolutely
continuous paths ¢ : [0,7] — HI(R) satisfying c¢{0) == h,c(T") = k. Let U be the potential
function in (3). Assume U is non-negative. We define the Agmon distance between i, &k by

dg? (b, k) = inf {£y(c) | ¢ € ACrpi(H'(R))} (9)
where . .
0@ = | TNzt (10)
The following estimate is the second main result.
Theorem 5. Assume that U satisfies (A1),(A2),(A3). Then it holds that
log (Ez(Al— Ei(N)

lim sup < —d["}g(hg, —hg). (11)

A—oo



