Local Smoothness of the Densities of Solutions of SDEs with Singular Coefficients *

Gô Yûki

(Ritsumeikan University and Japan Science and Technology Agency)

Joint work with Arturo Kohatsu-Higa[†]and Masafumi Hayashi[‡]

1 Introduction

Consider the following one dimensional SDE of the form

$$X_t = x_0 + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds \ (0 \le t \le T),$$
(1)

where $x_0 \in \mathbb{R}$ and $(B)_{t>0}$ is a one dimensional Brownian motion.

Note that if we assume that the coefficients of a hypoelliptic SDE are bounded functions with bounded derivatives of any order, then the solution of (1) has a smooth density (see, for example, Nualart[4]). In recent years, one of the directions in this area is to develop tools to deal with the case of non-smooth coefficients.

Some related results have already been obtained for this problem, for example, Fournier and Printems [1] proved in the case that σ is α -Hölder continuous with $\alpha > \frac{1}{2}$ and b is at most linear growth then the density of X_t exists for all t > 0. In that case, they showed the existence of the density on the set $\{x \in \mathbb{R}; \sigma(x) \neq 0\}$. A careful analysis of their method shows that it is not amenable to obtain any further properties of the density (such as Hölder continuity).

For the multi-dimensional SDEs whose coefficients depends on time, Kusuoka [2] introduced some special space denoted by V_h which is larger than Sobolev space and showed the relation between the space V_h and absolute continuity. According to [2], one can show that the existence of the density of X_t on the set $\{x \in \mathbb{R}; \sigma(x) \neq 0\}$ when the coefficients are bounded, σ is twice continuously differentiable on $\{x \in \mathbb{R}; \sigma(x) \neq 0\}$ and b is Lipschitz continuous on \mathbb{R} .

2 Main Result

Definition 1. Let $y_0 \in \mathbb{R}$ and $\varepsilon > 0$. The law of X has a density function p_{y_0} on $B_{\varepsilon}(y_0) := \{y \in \mathbb{R}; |y - y_0| < \varepsilon\}$ if

$$E[f(X)] = \int_{\mathbb{R}} f(y) p_{y_0}(y) dy$$

for any continuous and bounded function f whose support in $B_{\varepsilon}(y_0)$.

Our main purpose is to prove the local smoothness of the density of the solution of (1) under the following assumptions.

^{*}This research has been supported by grants of the Japanese government and it profited from fruitful discussions with Stefano de Marco.

[†]Ritsumeikan University and Japan Science and Technology Agency.

[‡]Ritsumeikan University and Japan Science and Technology Agency.

Assumptions

There exists some $y_0 \in \mathbb{R}$ and $\varepsilon > 0$ such that

(A1): σ and b are bounded on the open ball $B_{6\varepsilon}(y_0)$. Moreover, $\inf_{x\in B_{6\varepsilon}(y_0)} |\sigma(x)| > \sigma_0 > 0$ for some constant σ_0 .

(A2) $\sigma \in C_b^{\infty}(B_{6\varepsilon}(y_0)).$

(A3): $\sigma^{-1}b := \frac{b}{\sigma}$ is α -Hölder continuous on $B_{6\varepsilon}(y_0)$, where $\alpha \in (0, 1)$. To prove the local smoothness of the density, following lemmas are useful.

Lemma 1. Let X be a \mathbb{R} -valued random variable and φ be its characteristic function. Assume that the following inequality holds for some positive constant C and $0 < \alpha < 1$.

$$|\varphi(\theta)| \le 1 \land (C|\theta|^{-(1+\alpha)}) \ (\forall \theta \in \mathbb{R}).$$

Then the density function of the law of X exists and is γ -Hölder continuous for any $0 < \gamma < \alpha$.

Lemma 2. Let X be a \mathbb{R} -valued random variable, $\varepsilon > 0$ and ϕ_{ε} be an element of C_b^{∞} which satisfies that

$$1_{B_{\varepsilon}(0)} \le \phi_{\varepsilon} \le 1_{B_{2\varepsilon}(0)}.$$

Fix $y_0 \in \mathbb{R}$. Set $m_0 := E[\phi_{\varepsilon}(X - y_0)] > 0$ and consider \mathcal{L}_{y_0} the probability measure on \mathbb{R} such that

$$\int_{\mathbb{R}} f(y) \mathcal{L}_{y_0}(dy) = \frac{1}{m_0} E[f(X)\phi_{\varepsilon}(X-y_0)],$$

for all continuous and bounded function f. If \mathcal{L}_{y_0} possesses a density \tilde{p}_{y_0} then $p_{y_0} := m_0 \tilde{p}_{y_0}$ is the density function of X on $B_{\varepsilon}(y_0)$.

Thanks to Lemma 1 and Lemma 2, if for t > 0,

$$|E[e^{i\theta X_t}\phi_{\varepsilon}(X_t - y_0)]| \le 1 \land (C|\theta|^{-(1+\gamma)}) \ (\forall|\theta| \ge 1)$$

$$\tag{2}$$

holds for some positive constants C and γ , then for any $\gamma' \in (0, \gamma)$ the density function of the X_t exists and is γ' -Hölder continuous on $B_{\varepsilon}(y_0)$. Here, ϕ_{ε} is an element of $C_b^{\infty}(\mathbb{R})$ which satisfies the conditions of Lemma 2.

The main tool of our approach is Malliavin calculus which is well known as a method to prove the regularity of a solution of a SDE. However, in general the above solution X is not differentiable in Malliavin sense. To solve this problem, we use Girsanov's theorem and localize X by using some stopping times in order to deal with the local smoothness of the diffusion coefficient.

In our method, we consider a localization method for σ together with Girsanov's theorem in order to treat the regularity of the density. The localization allows to change the process X by a regularized version X for which Malliavin Calculus is applicable. The remaining problem is how to deal with the change of measure which contains the non-smooth function b. At this point, we use a similar argument as in [1], approximating the random variable X_t by a corresponding approximation. Then the change of measure is also approximated by its value at $t-\varepsilon$. This allows the use of the integration by parts formula. Finally, one needs to consider the approximation error which will finally lead to the following result.

Theorem 1. Assume (A1), (A2) and (A3). Then for any initial value x_0 , any $0 < t \leq T$ and any $0 < \gamma < \alpha$, the law of X_t has a γ -Hölder continuous density on $B_{\varepsilon}(y_0)$.

For examples of applications of the results obtained here, see [1] and [3].

References

- [1] N. Fournier and J. Printems, Absolute continuity for some one dimensional processes, Bernoulli, 16(2), 2010, 343-360.
- [2] S. Kusuoka, Existence of densities of solutions of stochastic differential equations by Malliavin calculus, J. Functional Analysis 258 (2010), 758-784.
- [3] S. D. Marco, On Probability Distributions of Diffusions and Financial Models with nonglobally smooth coefficients. PhD. Thesis, http://cermics.enpc.fr/ de-marcs/home.html
- [4] D. Nualart, The Malliavin calculus and Related Topics, Second edition, Springer Verlag, (2006)