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Nourdin and Peccati showed that by applying Stein’s equation and Malliavin calculus we can
measure the distance between the standard normal law and the distributions of random variables in
D2 (the Sobolev space with respect to Malliavin derivative). This method is called Stein’s method.
And now, many mathematicians consider Stein’s method with respect to other distributions instead
of the standard normal law. For example, the Gamma distribution and the Pearson distribution.
In this work, we consider the generalization of the method to more general distributions by using
one-dimensional stochastic differential equations.

Let S be the interval (I,u) (—oo <1 < u < o0) and i be a probability measure on S with a
density function p which is continuous and strictly positive on S. Consider a continuous function
b on S such that there exists k € (I,u) such that b(z) > 0 for x € (I, k), b(z) < 0 for « € (k,u), bp
is bounded on S and

/l“ b(x)p(z)dx = 0.
Define

Then, the stochastic differential equation:
dXt = b(Xt)dt + a(Xt)th, t Z 0

has a unique Markovian weak solution which is ergodic with invariant density p (see [1]).
For f € Cy(S) (the set of continuous functions on S vanishing at the boundary of 5), let
my = flu f(z)p(xz)dx and define gy by, for every x € S,

Gp(x) == % /l ") — mp)p(y)dy = —% / "(F) = mp)p(w)dy.

a(x)p a(x)p

Then, g¢(z) == fom gy (y)dy satisfies that f —my = Agy and by the definition of my we have

1 . .

f(z) = B[f(X)] = a(2)3}(z) + b(x)gs (x)

where X is a random variable with its law p. This equation is called Stein’s equation. When u has

the standard normal distribution, S, a and b can be chosen as (—o0, 00), 2 and —z, respectively.
We can estimate the bounds of gy and g’f as follows.

Proposition 1. Assume that there exist I',u’ € (I,u) such that b is non-increasing on (1,1') and
(w',u). Consider f : S — R such that gy is well-defined and || f|o := sup,eg|f(z)| < co. Then
we have

Ngrlle < Cillflloo
lagyllee < Collflle

where Cy and Cy are strictly positive constants.

Proposition 2. Assume that if u < oo, there exists u' € (I,u) such that b is non-decreasing and
Lipschitz continuous on [v',u) and liminf, ,, a(z)/(u —x) > 0; if u = oo, there exists u' € (I, u)
such that b is non-decreasing on [u’',u) and liminf,_,, a(x) > 0. Similarly, assume that if | <
00, there exists I' € (I,u) such that b is non-increasing and Lipschitz continuous on (I,1'] and



liminf, ,;a(x)/(x—1) > 0; if | = —o0, there exists I’ € (I,u) such that b is non-decreasing on (I,1']
and liminf,_,; a(z) > 0. Then we have

13%1l00 < Cs ([ f1loe + 11110
for f € C4(S) where Cs is a constant.

We are now able to derive Stein’s bound between the probability measure p and the law of a
random variable Y in a certain class. Let D be the Malliavin derivative, D* be the adjoint operator
(the Skorohod integral operator) and L := —D*D (the Ornstein-Uhlenbeck operator).

Theorem 3. Assume X ~ p and let Y be an S-valued random variable in D*? with b(Y) € L2.
Then for every f: S — R such that gf,g} are bounded,

[Blf(Y) = F(X)]]
1

< 3511 || B 30) + (D) (40) = BRI} DY) Y || + sl 1O

The bound in Theorem 3 is optimal in the following sense.

Theorem 4. A random variable Y € DY? with its values on S which satisfies b(Y) € L. Then,
Y has probability distribution p if and only if E[b(Y)] =0 and

E [a(Y) +(D(~L)"*b(Y), DY)H’ Y] =0.

Consider a distance between distributions of random variables F' and G on S defined by

dy (L(F), £(G)) := sup [B[f(F)] - E[f(G)]] (1)

where L£(F) is the distribution of F' and H is a set of functions on S. By Theorem 3 we obtain an
estimate for the distance between X and Y as follows:

La(y) + (D(=)7 {b(¥) — EB(Y)]} ,DY>HH

L)) < sup 37]1E |
fer

+ sup [|g o [E [b(Y)] . (2)
fer

There are many kinds of distances between distributions defined by (1). For example, by taking
H = {14,232 € (I,u)}, one obtains the Kolmogorov distance; by taking H = {f : [|f|[z < 1},
where || - ||z denotes the usual Lipschitz seminorm, one obtains the Wasserstein (or Kantorovich-
Wasserstein) distance; by taking H = {f : ||f||pr < 1}, where ||-||gr = || ||z + || - ||co, OneE obtains
the Fortet-Mourier (or bounded Wasserstein) distance; by taking #H equal to the collection of all
indicators 15 of Borel sets, one obtains the total variation distance.

By (2), Propositions 1 and 2, we have estimates for the distances above. When inf ¢ a(z) > 0,
by using Proposition 1, we have estimates for all the distances in the examples above. When
inf,.es a(z) = 0, by using Proposition 2, we have estimates for the Wasserstein distance and the
Fortet-Mourier distance. Note that estimates for the Kolmogorov distance and the total variation
distance are failed when inf,cg a(z) = 0. If Y is expressed as an explicit function of some Gaussian
random variables, the bound in Theorem 3 can be calculated. Hence, we can apply these results
to obtain the order of convergence for sequence of functions of Gaussian random variables.
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