
Stein’s method for invariant measures of diffusions via Malliavin
calculus

Seiichiro Kusuoka
Research Fellow of the Japan Society for the Promotion of Science (PD)

(Joint work with Ciprian A. Tudor)

Nourdin and Peccati showed that by applying Stein’s equation and Malliavin calculus we can
measure the distance between the standard normal law and the distributions of random variables in
D1,2 (the Sobolev space with respect to Malliavin derivative). This method is called Stein’s method.
And now, many mathematicians consider Stein’s method with respect to other distributions instead
of the standard normal law. For example, the Gamma distribution and the Pearson distribution.
In this work, we consider the generalization of the method to more general distributions by using
one-dimensional stochastic differential equations.

Let S be the interval (l, u) (−∞ ≤ l < u ≤ ∞) and µ be a probability measure on S with a
density function p which is continuous and strictly positive on S. Consider a continuous function
b on S such that there exists k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k), b(x) < 0 for x ∈ (k, u), bp
is bounded on S and ∫ u

l

b(x)p(x)dx = 0.

Define

a(x) :=
2
∫ x

l
b(y)p(y)dy

p(x)
, x ∈ S.

Then, the stochastic differential equation:

dXt = b(Xt)dt+
√
a(Xt)dWt, t ≥ 0

has a unique Markovian weak solution which is ergodic with invariant density p (see [1]).
For f ∈ C0(S) (the set of continuous functions on S vanishing at the boundary of S), let

mf :=
∫ u

l
f(x)p(x)dx and define g̃f by, for every x ∈ S,

g̃f (x) :=
2

a(x)p(x)

∫ x

l

(f(y)−mf )p(y)dy = − 2

a(x)p(x)

∫ u

x

(f(y)−mf )p(y)dy.

Then, gf (x) :=
∫ x

0
g̃f (y)dy satisfies that f −mf = Agf and by the definition of mf we have

f(x)−E[f(X)] =
1

2
a(x)g̃′f (x) + b(x)g̃f (x)

where X is a random variable with its law µ. This equation is called Stein’s equation. When µ has
the standard normal distribution, S, a and b can be chosen as (−∞,∞), 2 and −x, respectively.

We can estimate the bounds of gf and g′f as follows.

Proposition 1. Assume that there exist l′, u′ ∈ (l, u) such that b is non-increasing on (l, l′) and
(u′, u). Consider f : S → R such that g̃f is well-defined and ∥f∥∞ := supx∈S |f(x)| < ∞. Then
we have

||g̃f ||∞ ≤ C1||f ||∞
||ag̃′f ||∞ ≤ C2||f ||∞

where C1 and C2 are strictly positive constants.

Proposition 2. Assume that if u < ∞, there exists u′ ∈ (l, u) such that b is non-decreasing and
Lipschitz continuous on [u′, u) and lim infx→u a(x)/(u − x) > 0; if u = ∞, there exists u′ ∈ (l, u)
such that b is non-decreasing on [u′, u) and lim infx→u a(x) > 0. Similarly, assume that if l <
∞, there exists l′ ∈ (l, u) such that b is non-increasing and Lipschitz continuous on (l, l′] and



lim infx→l a(x)/(x− l) > 0; if l = −∞, there exists l′ ∈ (l, u) such that b is non-decreasing on (l, l′]
and lim infx→l a(x) > 0. Then we have

||g̃′f ||∞ ≤ C3(||f ||∞ + ||f ′||∞)

for f ∈ C1
0 (S) where C3 is a constant.

We are now able to derive Stein’s bound between the probability measure µ and the law of a
random variable Y in a certain class. Let D be the Malliavin derivative, D∗ be the adjoint operator
(the Skorohod integral operator) and L := −D∗D (the Ornstein-Uhlenbeck operator).

Theorem 3. Assume X ∼ µ and let Y be an S-valued random variable in D1,2 with b(Y ) ∈ L2.
Then for every f : S → R such that g̃f , g̃

′
f are bounded,

|E[f(Y )− f(X)]|

≤ ||g̃′f ||∞E

[∣∣∣∣E [
1

2
a(Y ) + ⟨D(−L)−1 {b(Y )−E[b(Y )]} , DY ⟩H

∣∣∣∣Y ]∣∣∣∣]+ ||g̃f ||∞|E [b(Y )] |.

The bound in Theorem 3 is optimal in the following sense.

Theorem 4. A random variable Y ∈ D1,2 with its values on S which satisfies b(Y ) ∈ L2. Then,
Y has probability distribution µ if and only if E[b(Y )] = 0 and

E

[
1

2
a(Y ) + ⟨D(−L)−1b(Y ), DY ⟩H

∣∣∣∣Y ]
= 0.

Consider a distance between distributions of random variables F and G on S defined by

dH(L(F ),L(G)) := sup
f∈H

|E[f(F )]−E[f(G)]| (1)

where L(F ) is the distribution of F and H is a set of functions on S. By Theorem 3 we obtain an
estimate for the distance between X and Y as follows:

dH(L(Y ), µ) ≤ sup
f∈F

||g̃′f ||∞E

[∣∣∣∣12a(Y ) + ⟨D(−L)−1 {b(Y )−E[b(Y )]} , DY ⟩H
∣∣∣∣]

+ sup
f∈F

||g̃f ||∞|E [b(Y )] |. (2)

There are many kinds of distances between distributions defined by (1). For example, by taking
H = {1(l,z]; z ∈ (l, u)}, one obtains the Kolmogorov distance; by taking H = {f : ||f ||L ≤ 1},
where || · ||L denotes the usual Lipschitz seminorm, one obtains the Wasserstein (or Kantorovich-
Wasserstein) distance; by taking H = {f : ||f ||BL ≤ 1}, where || · ||BL = || · ||L+ || · ||∞, one obtains
the Fortet-Mourier (or bounded Wasserstein) distance; by taking H equal to the collection of all
indicators 1B of Borel sets, one obtains the total variation distance.

By (2), Propositions 1 and 2, we have estimates for the distances above. When infx∈S a(x) > 0,
by using Proposition 1, we have estimates for all the distances in the examples above. When
infx∈S a(x) = 0, by using Proposition 2, we have estimates for the Wasserstein distance and the
Fortet-Mourier distance. Note that estimates for the Kolmogorov distance and the total variation
distance are failed when infx∈S a(x) = 0. If Y is expressed as an explicit function of some Gaussian
random variables, the bound in Theorem 3 can be calculated. Hence, we can apply these results
to obtain the order of convergence for sequence of functions of Gaussian random variables.
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