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In recent years, there has been a growing interest in the study of infinite dimensional stochas-
tic dynamics associated with models of Euclidean quantum field theory, hydrodynamics, and
statistical mechanics. Equilibrium states of such dynamics are described by Gibbs measures.
The stochastic dynamics corresponding to these states is given by a diffusion semigroup. On
some minimal domain of smooth functions, the infinitesimal generator of the semigroup coin-
cides with the Dirichlet operator defined through a classical Dirichlet form of gradient type with
a Gibbs measure. From an analytic point of view, it is very important to study Lp-uniqueness of
the Dirichlet operator, that is, the question whether or not the Dirichlet operator restricted to
the minimal domain has a unique closed extension in the Lp-space of the Gibbs measure under
consideration, which generates a C0-semigroup. As is well known, in the case of p = 2, this
uniqueness is equivalent to essential self-adjointness.

The first objective of this talk is to prove Lp-uniqueness of the Dirichlet operator for all
p ≥ 1, under much weaker conditions on the growth rate of the potential function of the Gibbs
measure by a modification of the SPDE approach presented in [5]. Important new examples
are exp(φ)1-quantum fields in infinite volume in the context of Euclidean quantum field theory.
These models were introduced (for the case where R occurring in (1) below is replaced by a
2-dimensional Euclidean space-time R2 and where d = 1) by Albeverio and Høegh-Krohn in
1970’s. More precisely, we are concerned with Gibbs measures on an infinite volume path space
C(R, Rd) given by the following formal expression:

µ(dw) = Z−1 exp
{
− 1

2

∫
R

(
(−∆x + m2)w(x), w(x)

)
Rddx

−
∫

R
dx

( ∫
Rd

e(w(x),ξ)Rd ν(dξ)
)} ∏

x∈R
dw(x). (1)

Here Z is a normalizing constant, m > 0 denotes mass, ∆x := d2/dx2, ν is a bounded positive
measure on Rd with compact support, and

∏
x∈R dw(x) stands for a (heuristic) volume measure

on the space of maps from R into Rd. This has the interpretation of a quantized d-dimensional
vector field with an interaction of exponential type in the 1-dimensional space-time R, a model
which is known as stochastic quantization of the exp(φ)1-quantum field model (with weight
measure ν).

The second objective of this talk is to discuss a characterization of the stochastic dynamics
corresponding to the above Dirichlet operator. Due to general theory, the stochastic dynamics

∗This talk is based on jointwork [2, 5] with Sergio Albeverio (Universität Bonn) and Michael Röckner (Uni-
versität Bielefeld).
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constructed through the Dirichlet form approach solves the parabolic SPDE (5) weakly. How-
ever, we prove something much better, namely existence and uniqueness of a strong solution.
We achieve this by first proving pathwise uniqueness for SPDE (5) and then applying the recent
work of Ondreját [6] on the Yamada–Watanabe theorem for mild solutions of SPDE. As a con-
sequence, we have the existence of a unique strong solution to SPDE (5) by using simple and
straightforward arguments which do not rely on any finite volume approximations discussed as
in Iwata [4] in case of polynomial (i.e., smooth) self-interaction.

Before stating our results, we introduce some notation and objects we will be working with.
We define a weight function ρr ∈ C∞(R, R), r ∈ R, by ρr(x) := erχ(x), x ∈ R, where χ ∈
C∞(R, R) is a positive symmetric convex function satisfying χ(x) = |x| for |x| ≥ 1. We fix a
positive constant r sufficiently small. We set E := L2(R, Rd; ρ−2r(x)dx). This space is a Hilbert
space with its inner product defined by

(w, w̃)E :=
∫

R

(
w(x), w̃(x)

)
Rdρ−2r(x)dx, w, w̃ ∈ E.

Moreover, we set H := L2(R, Rd) and denote by ‖ · ‖E and ‖ · ‖H the corresponding norms in
E and H, respectively. We regard the dual space E∗ of E as L2(R, Rd; ρ2r(x)dx). We endow
C(R, Rd) with the compact uniform topology and introduce a tempered subspace

C := {w ∈ C(R, Rd)| lim
|x|→∞

|w(x)|ρ−r(x) < ∞ for every r > 0}.

We easily see that the inclusion C ⊂ E ∩ C(R, Rd) is dense with respect to the topology of E.
Let B be the topological σ-field on C(R, Rd). For T1 < T2 ∈ R, we define by B[T1,T2] and B[T1,T2],c

the sub-σ-fields of B generated by {w(x);T1 ≤ x ≤ T2} and {w(x);x ≤ T1, x ≥ T2}, respectively.
For T1, T2 ∈ R and z1, z2 ∈ Rd, let Wz1,z2

[T1,T2] be the path space measure of the Brownian bridge
such that w(T1) = z1, w(T2) = z2.

We now introduce a Gibbs measure µ on C(R, Rd). In this talk, we impose the following
conditions on the potential function U ∈ C(Rd, R):

(U1) There exist a constant K1 ∈ R and a convex function V : Rd → R such that

U(z) =
K1

2
|z|2 + V (z), z ∈ Rd.

(U2) There exist K2 > 0, R > 0 and α > 0 such that

U(z) ≥ K2|z|α, |z| > R.

(U3) There exist K3,K4 > 0 and 0 < β < 1 + α
2 such that

|∇̃U(z)| ≤ K3 exp(K4|z|β), z ∈ Rd,

where ∇̃U(z) := K1z +∂0V (z), z ∈ Rd and ∂0V is the minimal section of the subdifferential ∂V .
(In the case where U ∈ C1(Rd, R), ∇̃U coincides with the usual gradient ∇U .)

Let HU := −1
2∆z +U be the Schrödinger operator on L2(Rd, R), where ∆z :=

∑d
i=1 ∂2/∂z2

i is
the d-dimensional Laplacian. Then condition (U2) assures that HU has purely discrete spectrum
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and a complete set of eigenfunctions. We denote by λ0(> minU) the minimal eigenvalue and by
Ω the corresponding normalized eigenfunction in L2(Rd, R). This eigenfunction is called ground
state and it can be chosen to be strictly positive. Moreover, it has exponential decay at infinity.
To be precise, there exist some positive constants D1, D2 such that

0 < Ω(z) ≤ D1 exp
(
− D2|z|U 1

2
|z|(z)1/2

)
, z ∈ Rd,

where U 1
2
|z|(z) := inf{U(y)| |y − z| ≤ 1

2 |z|}.

For T1 < T2, and for all T1 ≤ x1 < x2 < · · · < xn ≤ T2, A1, A2, · · · , An ∈ B(Rd), we define
a cylinder set A ∈ B[T1,T2] by A := {w ∈ C(R, Rd) | w(x1) ∈ A1, w(x2) ∈ A2, · · · , w(xn) ∈ An}.
Next, we set

µ(A) :=
(
Ω, e−(x1−T1)(HU−λ0)

(
1A1e

−(x2−x1)(HU−λ0)
(
1A2 · · ·

e−(xn−xn−1)(HU−λ0)
(
1Ane−(T2−xn)(HU−λ0)Ω

))))
L2(Rd,R)

= eλ0(T2−T1)

∫
Rd

dz1Ω(z1)
∫

Rd

dz2Ω(z2)p(T2 − T1, z1, z2)

×
∫

C(R,Rd)
1A(w) exp

(
−

∫ T2

T1

U(w(x))dx
)
Wz1,z2

[T1,T2](dw), (2)

where p(t, z1, z2), t > 0, z1, z2 ∈ Rd, is the transition probability density of standard Brownian
motion on Rd, and we used the Feynman–Kac formula for the second line. Then by recalling that
e−tHU Ω = e−tλ0Ω, ‖Ω‖L2(Rd,R) = 1 and by the Markov property of the d-dimensional Brownian
motion, (2) defines a consistent family of probability measures, and hence µ can be extended to
a probability measure on C(R, Rd).

Furthermore, this measure satisfies the following DLR-equations:

Eµ
[
1A|B[T1,T2],c

]
(ξ) = Z−1

[T1,T2](ξ)
∫

A
exp

(
−

∫ T2

T1

U(w(x))dx
)
Wξ(T1),ξ(T2)

[T1,T2] (dw),

µ-a.e. ξ ∈ C(R, Rd), for all A ∈ B[T1,T2], T1 < T2, (3)

where Z[T1,T2](ξ) := EWξ(T1),ξ(T2)

[T1,T2] [exp(−
∫ T2

T1
U(w(x))dx)] is a normalizing constant. (Although

generally there exist other probability measures on C(R, Rd) satisfying the DLR-equation (3),
we only consider the Gibbs measure µ which has been constructed in (2) in this talk.) We also
note that the Gibbs measure µ is supported on C by using the standard moment estimates of
Brownian motion. Then by the continuity of the inclusion map of C into E, we can regard
µ ∈ P(E) by identifying it with its image measure under the inclusion map.

Now we are in a position to introduce the pre-Dirichlet form (E ,FC∞
b ). Let FC∞

b be the
space of all smooth cylinder functions on E having the form

F (w) = f(〈w,ϕ1〉, . . . , 〈w,ϕn〉), w ∈ E,

with n ∈ N, f = f(α1, . . . , αn) ∈ C∞
b (Rn, R) and ϕ1, . . . , ϕn ∈ C∞

0 (R, Rd). Here we set 〈w,ϕ〉 :=∫
R(w(x), ϕ(x))Rddx if the integral converges absolutely. Note that FC∞

b is dense in Lp(µ) for all
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p ≥ 1. For F ∈ FC∞
b , we define the H-Fréchet derivative DHF : E → H by

DHF (w) :=
n∑

j=1

∂f

∂αj
(〈w,ϕ1〉, . . . , 〈w,ϕn〉)ϕj .

Then we consider the pre-Dirichlet form (E ,FC∞
b ) which is given by

E(F,G) =
1
2

∫
E

(
DHF (w), DHG(w)

)
H

µ(dw), F,G ∈ FC∞
b .

Proposition 1

E(F,G) = −
∫

E
L0F (w)G(w)µ(dw), F,G ∈ FC∞

b ,

where L0F ∈ Lp(µ), p ≥ 1, F ∈ FC∞
b , is given by

L0F (w) =
1
2

n∑
i,j=1

∂2f

∂αi∂αj

(
〈w,ϕ1〉, . . . , 〈w,ϕn〉

)
〈ϕi, ϕj〉

+
1
2

n∑
i=1

∂f

∂αi

(
〈w,ϕ1〉, . . . , 〈w,ϕn〉

)
·
{
〈w, ∆xϕi〉 − 〈(∇̃U)(w(·)), ϕi〉

}
.

This proposition means that the operator L0 is the pre-Dirichlet operator which is associated
with the pre-Dirichlet form (E ,FC∞

b ). In particular, (E ,FC∞
b ) is closable in L2(µ). Let us

denote by D(E) the completion of FC∞
b with respect to the E1/2

1 -norm. By the standard theory
of Dirichlet forms, (E ,D(E)) is a Dirichlet form and the operator L0 has a self-adjoint extension
(Lµ, Dom(Lµ)), called the Friedrichs extension, corresponding to the Dirichlet form (E ,D(E)).
The semigroup {etLµ}t≥0 generated by (Lµ, Dom(Lµ)) is Markovian, i.e., 0 ≤ etLµF ≤ 1, µ-a.e.
whenever 0 ≤ F ≤ 1, µ-a.e. Moreover, since {etLµ}t≥0 is symmetric on L2(µ), the Markovian
property implies that ‖etLµF‖L1(µ) ≤ ‖F‖L1(µ) holds for F ∈ L2(µ), and {etLµ}t≥0 can be
extended as a family of C0-semigroup of contractions in Lp(µ) for all p ≥ 1.

Theorem 1 (1) The pre-Dirichlet operator (L0,FC∞
b ) is Lp(µ)-unique for all p ≥ 1, i.e., there

exists exactly one C0-semigroup in Lp(µ) such that its generator extends (L0,FC∞
b ).

(2) There exists a diffusion process M := (Θ,F , {Ft}t≥0, {Xt}t≥0, {Pw}w∈E) such that the semi-
group {Pt}t≥0 generated by the unique (self-adjoint) extension of (L0,FC∞

b ) satisfies the follow-
ing identity for any bounded measurable function F : E → R, and t > 0:

PtF (w) =
∫

Θ
F (Xt(ω))Pw(dω), µ-a.s. w ∈ E.

Moreover, M is the unique diffusion process solving the following “componentwise” SDE:

〈Xt, ϕ〉 = 〈w,ϕ〉 + 〈Bt, ϕ〉 +
1
2

∫ t

0

{
〈Xs, ∆xϕ〉 − 〈(∇̃U)(Xs(·)), ϕ〉

}
ds,

t > 0, ϕ ∈ C∞
0 (R, Rd), Pw-a.s., (4)

for quasi-every w ∈ E and such that its corresponding semigroup given by (4) consists of locally
uniformly bounded (in t) operators on Lp(µ), p ≥ 1, where {Bt}t≥0 is an {Ft}t≥0-adapted H-
cylindrical Brownian motion starting at zero defined on (Θ,F , {Ft}t≥0, Pw).
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Theorem 2 For quasi-every w ∈ E, the parabolic SPDE

dXt(x) =
1
2
{
∆xXt(x) − (∇̃U)(Xt(x))

}
dt + dBt(x), x ∈ R, t > 0, (5)

has a unique strong solution X = {Xw
t (·)}t≥0 living in C([0,∞), E) ∩ C((0,∞), C). Namely,

there exists a set S ⊂ E with Cap(S) = 0 such that for any H-cylindrical Brownian motion
{Bt}t≥0 starting at zero defined on a filtered probability space (Θ,F , {Ft}t≥0, P) satisfying the
usual conditions and an initial datum w ∈ E \ S, there exists a unique {Ft}t≥0-adapted process
X = {Xw

t (·)}t≥0 living in C([0,∞), E) ∩ C((0,∞), C) satisfying (4).

Remark 1 Obviously, the uniqueness result in Theorem 2 implies the (thus weaker) uniqueness
stated for the diffusion process M in Theorem 1. However, it does not imply the Lp(µ)-uniqueness
of the Dirichlet operator. This is obvious, since a priori the latter might have extensions which
generate non-Markovian semigroups which thus have no probabilistic interpretation as transition
probabilities of a process. Therefore, neither of the two uniqueness results in Theorems 1 and
2, i.e., Lp(µ)-uniqueness of the Dirichlet operator and strong uniqueness of the corresponding
SPDE respectively, implies the other.

Remark 2 If the potential function U is a C1-function with polynomial growth at infinity, Iwata
[4] proves that SPDE (5) has a unique strong solution Xw = {Xw

t (·)}t≥0 living in C([0,∞), C) for
every initial datum w ∈ C. On the other hand, in the case of exp(φ)1-quantum fields introduced
below, since (∇U)(w(·)) /∈ C for w ∈ C in general, we cannot expect to solve SPDE (5) in
C([0,∞), C) for a given initial datum w ∈ C. Hence if we replace the state space C by a much
smaller tempered subspace Ce such that (∇U)(w(·)) ∈ Ce holds for w ∈ Ce, we might construct a
unique strong solution to SPDE (5) living in C([0,∞), Ce) for every initial datum w ∈ Ce. (A
possible candidate for Ce could be the space of all paths behaving like

|w(x)| ∼ log(log(log(log(· · ·x)))), |x| → ∞. )

Example 1 (P (φ)1-quantum fields): We consider the case where the potential function U is
written as U(z) =

∑2n
j=0 aj |z|j , a2n > 0, n ∈ N. A double-well potential U(z) = a(|z|4−|z|2), a >

0, is also particularly important from the point of view of physics.

Example 2 (exp(φ)1-quantum fields): We introduce a Gibbs measure µ with the formal
expression (1). Let consider an exponential type potential function U : Rd → R (with weight ν)
given by

U(z) =
m2

2
|z|2 + V (z) :=

m2

2
|z|2 +

∫
Rd

e(ξ,z)Rd ν(dξ), z ∈ Rd,

where ν is a bounded positive measure with supp(ν) ⊂ {ξ ∈ Rd| |ξ| ≤ L} for some L > 0. We
note that U is a smooth strictly convex function (i.e., ∇2U ≥ m2). Hence we can take K1 = m2,
K2 = m2

2 and α = 2. Moreover,

|U(z)| ≤ m2

2
|z|2 + ν(Rd)eL|z| ≤

( m2

2L2
+ ν(Rd)

)
e2L|z|, z ∈ Rd,
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and

|∇U(z)| ≤ m2|z| +
∫

Rd

|ξ|e(ξ,z)Rd ν(dξ) ≤ (
m2

L
+ Lν(Rd))eL|z|, z ∈ Rd.

Thus we can take β = 1, which satisfies β < 1 + α
2 in condition (U3).

Remark 3 We discuss a simple example of exp(φ)1-quantum fields in the case d = 1. This
example has been discussed in the 2-dimensional space-time case in Albeverio–Høegh-Krohn [1].
Let δa be the Dirac measure at a ∈ R and we consider ν(dξ) := 1

2

(
δ−a(dξ) + δa(dξ)

)
, a > 0.

Then the corresponding potential function is U(z) = m2

2 z2 + cosh(az), and (2) implies that the
Schrödinger operator HU has a ground state Ω satisfying

0 < Ω(z) ≤ D1 exp
(
− D2√

2
|z|e

a
4
|z|), z ∈ R, (6)

for some D1, D2 > 0. By the translation invariance of the Gibbs measure µ and (6), there exist
positive constants M1 and M2 such that

AT := µ
(
{w ∈ C(R, R)| |w(T )| >

4
a

log log T}
)

=
∫
|z|> 4

a
log log T

Ω(z)2dz ≤ M1T
−M2 log log T

for T large enough, and it implies
∑∞

T=1 AT < ∞. Then the first Borel–Cantelli lemma yields

µ
(
{w ∈ C(R, R)| lim sup

T→∞

|w(T )|
log log T

≤ 4
a
}
)

= 1,

and thus µ is supported by a much smaller subset of C(R, R) than C.
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