Hirofumi Osada (Kyushu University)

Let $S = \mathbb{R}^d$ and let S be the configuration space over S. Let $\sigma: S \times S \to \mathbb{R}^{d^2}$ and $\mathbf{b}: S \times S \to \mathbb{R}^d \cup \{\Delta\}$ be measurable functions. Here Δ means an extra point. Let $\mathbf{a} = \sigma \sigma^t$. We assume there exists a positive constant c_1 independent of (x, x) for each $(x, x) \in S \times S$ such that

$$0 \le \sum_{m,n=1}^{d} \mathbf{a}_{mn}(x,\mathsf{x}) \xi_m \xi_n \le c_1 |\xi|^2 \quad \text{ for all } \xi = (\xi_m) \in \mathbb{R}^d.$$
 (1)

For $\mathbf{X} = (X^i)_{i \in \mathbb{N}}$ we set $(X^i, X^{i*}) = \{(X^i_t, X^{i*}_t)\} \in C([0, \infty); S \times S)$ by

$$(X_t^i, \mathsf{X}_t^{i*}) = (X_t^i, \sum_{j \neq i, j \in \mathbb{N}} \delta_{X_t^j}).$$

We study the SDEs of the form:

$$dX_t^i = \sigma(X_t^i, \mathsf{X}_t^{i*}) dB_t^i + \mathbf{b}(X_t^i, \mathsf{X}_t^{i*}) dt \quad (i \in \mathbb{N}).$$

Let $S^{\infty} = S^{\mathbb{N}}$. Let $\check{\sigma}$ and $\check{\mathbf{b}}$ be the functions of $(x, (x_j)_{j \in \mathbb{N}})$ defined on $S \times S^{\infty}$ being symmetric in $(x_j)_{j \in \mathbb{N}}$ for each x and satisfying

$$\check{\sigma}(x,(x_j)_{j\in\mathbb{N}}) = \sigma(x,\sum_{j\in\mathbb{N}}\delta_{x_j}), \quad \check{\mathbf{b}}(x,(x_j)_{j\in\mathbb{N}}) = \mathbf{b}(x,\sum_{j\in\mathbb{N}}\delta_{x_j}). \tag{3}$$

Then we can rewrite (2) as (4)

$$dX_t^i = \check{\sigma}(X_t^i, (X_t^j)_{j \neq i}) dB_t^i + \check{\mathbf{b}}(X_t^i, (X_t^j)_{j \neq i}) dt \quad (i \in \mathbb{N}).$$

$$(4)$$

Let $\check{\mathbf{a}} = \check{\sigma}\check{\sigma}^t$. Write $\check{\mathbf{a}} = [\check{\mathbf{a}}_{kl}]_{1 \leq k,l \leq d}$ and $\check{\mathbf{b}} = (\check{\mathbf{b}}_k)_{1 \leq k \leq d}$. Then intuitively the generator is

$$\mathbf{L} := \frac{1}{2} \sum_{i \in \mathbb{N}} \sum_{k,l=1}^{d} \check{\mathbf{a}}_{kl}(s_i, (s_j)_{j \in \mathbb{I}, j \neq i}) \frac{\partial^2}{\partial s_{ik} \partial s_{il}} + \sum_{i \in \mathbb{N}} \sum_{k=1}^{d} \check{\mathbf{b}}_{k}(s_i, (s_j)_{j \in \mathbb{I}, j \neq i}) \frac{\partial}{\partial s_{ik}}.$$
 (5)

Here $s_i = (s_{i1}, \dots, s_{id}) \in \mathbb{R}^d$.

Our strategy to solve SDE (2) (and (4)) is to use a geometric property behind the SDE (2). We first consider invariant probability measure μ of the unlabeled dynamics associated with (2). Namely, we consider a probability measure μ whose log derivative \mathbf{d}^{μ} satisfies $\mathbf{b}(x,y) = \{\nabla_x \mathbf{a}(x,y) + \mathbf{a}(x,y) \mathbf{d}^{\mu}(x,y)\}/2$. Here \mathbf{d}^{μ} is the log derivative of the measure μ^1 given by (6), and the definition of \mathbf{d}^{μ} is given by (12).

Note that for a given pair (\mathbf{a}, μ) , **b** is determined uniquely. We construct the unlabeled diffusion associated with (\mathbf{a}, μ) by using the Dirichlet space given by (\mathbf{a}, μ) and prove the labeled process consisting of each component of the unlabeled diffusion satisfies (2) and (4).

If there were a Dirichlet space associated with the the (fully) labeled diffusion \mathbf{X} , we could use Ito formula for each component X^i and X^iX^j , and prove \mathbf{X} satisfies (5) since all coordinate functions x^i, x^ix^j $(i, j \in \mathbb{N})$ would be in the domain of the Dirichlet space locally. We emphasize that no Dirichlet spaces associated with the (fully) labeled diffusion \mathbf{X} exist. So we instead introduce an infinite sequence of Dirichlet spaces associated with the k-labeled process $\{((X_t^1, \ldots, X_t^k, \sum_{j>k} \delta_{X_t^j}))\}$ for all $k=0,1,\ldots$ This sequence of the k-labeled processes have some the consistency and satisfies the SDEs (2) and (4).

Let μ be a probability measure on $(S, \mathcal{B}(S))$. Let ρ^k be the k-correlation function of μ with respect to the Lebesgue measure. Let μ^k be the measure on $S^k \times S$ defined by

$$\mu^{k}(A \times B) = \int_{A} \mu_{\mathbf{x}}(B) \rho^{k}(\mathbf{x}) d\mathbf{x}.$$
 (6)

Here $\mathbf{x} = (x_1, \dots, x_k) \in S^k$ and $d\mathbf{x} = dx_1 \cdots dx_k$. Moreover, $\mu_{\mathbf{x}}$ is the Palm measure conditioned at \mathbf{x} :

$$\mu_{\mathbf{x}} = \mu(\cdot - \sum_{i=1}^{k} \delta_{x_i} | \mathbf{s}(x_i) \ge 1 \text{ for } i = 1, \dots, k).$$
 (7)

We now introduce Dirichlet forms describing the k-labeled dynamics. For a subset $A \subset S$ we define the map $\pi_A: S \to S$ by $\pi_A(s) = s(A \cap \cdot)$. We say a function $f: S \to \mathbb{R}$ is local if f is $\sigma[\pi_A]$ -measurable for some compact set $A \subset S$. We say f is smooth if \tilde{f} is smooth, where $\tilde{f}((s_i))$ is the permutation invariant function in (s_i) such that $f(s) = \tilde{f}((s_i))$ for $s = \sum_i \delta_{s_i}$.

Let \mathcal{D}_{\circ} be the set of all local, smooth functions on S with compact support. For $f,g\in\mathcal{D}_{\circ}$ we set $\mathbb{D}^{\mathbf{a}}[f,g]: \mathsf{S} \to \mathbb{R}$ by

$$\mathbb{D}^{\mathbf{a}}[f,g](\mathbf{s}) = \frac{1}{2} \sum_{i} \sum_{m,n=1}^{d} \mathbf{a}_{mn}(s_{i}, \mathbf{s}_{i}^{*}) \frac{\partial \widetilde{f}}{\partial s_{im}} \frac{\partial \widetilde{g}}{\partial s_{in}}.$$
 (8)

Here $s = \sum_i \delta_{s_i}$, $s_i^* = \sum_{j \neq i} \delta_{s_j}$, and $s_i = (s_{i1}, \dots, s_{id}) \in S$. For $k \in \mathbb{N}$ let $\mathcal{D}_{\circ}^k = C_0^{\infty}(S^k) \otimes \mathcal{D}_{\circ}$. For $f, g \in \mathcal{D}_{\circ}^k$ let $\nabla^{\mathbf{a}, k}[f, g]$ be such that

$$\nabla^{\mathbf{a},k}[f,g](\mathbf{x},\mathsf{s}) = \frac{1}{2} \sum_{i=1}^{k} \sum_{m,n=1}^{d} \mathbf{a}_{mn} \frac{\partial f(\mathbf{x},\mathsf{s})}{\partial x_{im}} \frac{\partial g(\mathbf{x},\mathsf{s})}{\partial x_{in}}.$$
 (9)

where $\mathbf{x} = (x_1, \dots, x_k) \in S^k$ and $x_i = (x_{i1}, \dots, x_{id}) \in S$. We set $\mathbb{D}^{\mathbf{a}, k}$ by

$$\mathbb{D}^{\mathbf{a},k}[f,g](\mathbf{x},\mathsf{s}) = \nabla^{\mathbf{a},k}[f,g](\mathbf{x},\mathsf{s}) + \mathbb{D}^{\mathbf{a}}[f(\mathbf{x},\cdot),g(\mathbf{x},\cdot)](\mathsf{s}). \tag{10}$$

Let $L^2(\mu^k) = L^2(S^k \times S, \mu^k)$. Let $(\mathcal{E}^{\mathbf{a},k}, \mathcal{D}^{\mathbf{a},k})$ be the bilinear form defined by

$$\mathcal{E}^{\mathbf{a},k}(f,g) = \int_{S^k \times \mathbf{S}} \mathbb{D}^{\mathbf{a},k}[f,g] d\mu^k, \quad \mathcal{D}^{\mathbf{a},k}_{\circ} = \{ f \in \mathcal{D}^k_{\circ} \cap L^2(\mu^k); \ \mathcal{E}^{\mathbf{a},k}(f,f) < \infty \}. \tag{11}$$

We assume there exists a probability measure μ on S satisfying (A.1)–(A.5):

- (A.1) ρ^k is locally bounded for each $k \in \mathbb{N}$.
- (A.2) There exists $\mathbf{d}^{\mu} = (\mathbf{d}_m^{\mu})_{m=1,\dots,d} \in \{L_{loc}^1(\mu^1)\}^d$ such that

$$\int_{S \setminus S} \mathbf{d}^{\mu} f d\mu^{1} = -\int_{S \setminus S} \nabla_{x} f d\mu^{1} \quad \text{for all } f \in \mathcal{D}_{\circ}^{1}.$$
(12)

Here $\nabla_x f(x, s) = (\frac{\partial f(x, s)}{\partial x_m})_{m=1,\dots,d}$, where $x = (x_1, \dots, x_d)$. Moreover, the column vector \mathbf{d}^{μ} satisfies

$$\mathbf{b} = \frac{1}{2} \{ \nabla_x \mathbf{a} \} \mathbf{d}^{\mu} + \frac{1}{2} \mathbf{a} \mathbf{d}^{\mu}, \quad \mathbf{b} \in L^2_{\mathsf{loc}}(\mu^1). \tag{13}$$

Here $\nabla_x \mathbf{a}$ is the matrix defined by $\nabla_x \mathbf{a} = \left[\frac{\partial \mathbf{a}_{mn}(x,s)}{\partial x_n}\right]$.

- (A.3) $(\mathcal{E}^{\mathbf{a},k}, \mathcal{D}^{\mathbf{a},k})$ is closable on $L^2(\mu^k)$ for each $k \in \{0\} \cup \mathbb{N}$.
- (A.4) $\operatorname{Cap}^{\mu}(\{S_{s.i.}\}^c) = 0.$
- (A.5) There exists T > 0 such that for each R > 0

$$\liminf_{r \to \infty} \left\{ \int_{|x| \le r + R} \rho^1(x) dx \right\} \cdot \ell(\frac{r}{\sqrt{(r+R)T}}) = 0, \quad \text{where } \ell(t) = (2\pi)^{-1/2} \int_t^\infty e^{-u^2/2} du. \tag{14}$$

Let $(\mathcal{E}^{\mathbf{a},k}, \mathcal{D}^{\mathbf{a},k})$ be the closure of $(\mathcal{E}^{\mathbf{a},k}, \mathcal{D}^{\mathbf{a},k})$ on $L^2(\mu^k)$. It is known that $(\mathcal{E}^{\mathbf{a},k}, \mathcal{D}^{\mathbf{a},k})$ is quasi-regular and the associated diffusion exists. Cap^{μ} in (A.4) is the capacity of the Dirichlet space $(\mathcal{E}^{a,0}, \mathcal{D}^{a,0}, L^2(\mu))$.

Theorem 1. Assume (A.1)–(A.5). Then there exists a set $S_0 \in \mathcal{B}(S)$ such that

$$\mu(\mathsf{S}_0) = 1, \quad \mathsf{S}_0 \subset \mathsf{S}_{\mathrm{s.i.}},\tag{15}$$

and that, for all $\mathbf{s} \in \kappa^{-1}(S_0)$, there exists a $S^{\mathbb{N}}$ -valued continuous process $\mathbf{X} = (X^i)_{i \in \mathbb{N}}$, and $\mathbb{R}^{\mathbb{N}}$ -valued Brownian motion $\mathbf{B} = (B^i)_{i \in \mathbb{N}}$ satisfying

$$dX_t^i = \sigma(X_t^i, \mathsf{X}_t^{i*}) dB_t^i + \mathbf{b}(X_t^i, \mathsf{X}_t^{i*}) dt \quad (i \in \mathbb{N})$$
(16)

$$\mathbf{X}_0 = \mathbf{s}.\tag{17}$$

Moreover, X satisfies

$$P(\kappa(\mathbf{X}_t) \in \mathsf{S}_0, \ 0 \le \forall t < \infty) = 1,\tag{18}$$

$$P(\sup_{0 \le t \le u} |X_t^i| < \infty \text{ for all } u \in \mathbb{N}, i \in \mathbb{N}) = 1.$$

$$(19)$$

Let $\kappa: S^{\mathbb{N}} \to \mathsf{S}$ such that $\kappa((s_i)) = \sum_i \delta_{s_i}$. Let $\kappa_{\text{path}}: C([0,\infty); S^{\mathbb{N}}) \to C([0,\infty); \mathsf{S})$ such that $\kappa_{\text{path}}(\mathbf{X}) = \sum_i \delta_{X_i^i}$.

Theorem 2. (1) Let \mathbf{S}_0 be the subset of $S^{\mathbb{N}}$ defined by $\mathbf{S}_0 = \kappa^{-1}(\mathsf{S}_0)$. Let $\mathbf{P}_{\mathbf{s}}$ be the distribution of \mathbf{X} given by Theorem 1. Then $\{\mathbf{P}_{\mathbf{s}}\}_{\mathbf{s}\in\mathbf{S}_0}$ is a diffusion with state space \mathbf{S}_0 .

(2) Let $s = \kappa(s)$. Let P_s be the distribution of $X := \kappa_{\mathrm{path}}(\mathbf{X})$. Then $\{P_s\}_{s \in S_0}$ is a μ -reversible diffusion with state space S_0 .

Example 1. Let $\Psi(x,y)$ be a Ruelle's class potential that is smooth on $\{x \neq y\}$. Let μ_{Ψ} be the associated canonical Gibbs measures. Then (A.1)–(A.3) are satisfied. The sutablity of (A.4) and (A.5) is easily checked.

Example 2. Let Ψ be the 2D Coulomb potential $\Psi(x) = -2\log|x|$ $(x \in \mathbb{R}^2)$ with $\beta = 2$. Let d = 2. Then the associated SDE becomes

$$dX_t^i = dB_t^i + \lim_{r \to \infty} \sum_{|X_t^i - X_t^j| < r} \frac{X_t^i - X_t^j}{|X_t^i - X_t^j|^2} dt \qquad (\mathbf{X}_0 = (x_i)_{i \in \mathbb{N}}).$$
(20)

Theorem 3. Let μ be the Ginibre random point field. Then there exists a set $\mathbf{S} \subset (\mathbb{R}^2)^{\mathbb{N}}$ such that $\mu(\{\sum_{i\in\mathbb{N}} \delta_{x_i}; \mathbf{x} = (x_i) \in \mathbf{S}\}) = 1$ and that (20) has a solution for all initial points $\mathbf{x} = (x_i)_{i\in\mathbb{N}} \in \mathbf{S}$. Moreover, for all initial points $\mathbf{x} \in \mathbf{S}$,

$$P(\mathbf{X}_t \in \mathbf{S} \cap \mathbf{S}_{\text{single}} \text{ for all } t) = 1.$$

Here $\mathbf{S}_{\text{single}} = \{\mathbf{s} = (s_i) \in (\mathbb{R}^2)^{\mathbb{N}}; s_i \neq s_j \text{ if } i \neq j\}$. More precisely, there exist $(\mathbb{R}^2)^{\mathbb{N}}$ -valued process $\mathbf{X} = (X^i)_{i \in \mathbb{N}}$ and Brownian motion $\mathbf{B} = (B^i)_{i \in \mathbb{N}}$ such that the pair (\mathbf{X}, \mathbf{B}) satisfies the SDE (20).

We remark that the DLR equation for μ does not make sense. However, by (20) one can say μ is a measure with 2D Coulomb interaction potential Ψ . Indeed, μ is the reversible measure of the unlabeled diffusion $\mathbb{X}_t = \sum_{i \in \mathbb{N}} \delta_{X_t^i}$, where the associated labeled dynamics $\mathbf{X}_t = (X_t^i) \in (\mathbb{R}^2)^{\mathbb{N}}$ is the solution of the infinitely dimensional SDE:

The Ginibre random point field μ is a probability measure on the configuration \mathbb{S} over \mathbb{R}^2 . It is known that μ is translation and rotation invariant. Moreover, μ is so called a determinantal random point field whose n-correlation function ρ^n is given by

$$\rho^{n}(x_{1}, \dots, x_{n}) = \det[K(x_{i}, x_{j})]_{1 \le i, j \le n},$$
(21)

where $K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{C}$ is the kernel defined by

$$K(x,y) = \frac{1}{\pi} \exp(-\frac{|x|^2}{2} - \frac{|y|^2}{2}) \cdot e^{x\bar{y}}.$$
 (22)

Here we identify \mathbb{R}^2 as \mathbb{C} by the obvious correspondence: $\mathbb{R}^2 \ni x = (x_1, x_2) \mapsto x_1 + \sqrt{-1}x_2 \in \mathbb{C}$, and $\bar{y} = y_1 - \sqrt{-1}y_2$ means the complex conjugate under this identification.

The key point of Theorem 3 is to calculate the log derivative of the one moment measure μ^1 of the Ginibre random point field μ .

The solution satisfies the second SDE:

Theorem 4. For each $s \in S$, (X, B) in Theorem 3 satisfies

$$dX_t^i = dB_t^i - X_t^i dt + \lim_{r \to \infty} \sum_{|X_t^j| < r, j \neq i} \frac{X_t^i - X_t^j}{|X_t^i - X_t^j|^2} dt \quad (i \in \mathbb{N})$$
 (23)

$$\mathbf{X}_0 = \mathbf{s}.\tag{24}$$

干渉ポテンシャル Ψ をもつ、干渉ブラウン運動について、つぎの3つの基本的な問題が、まだ十分に解決されていない。以下の問題はすべて、Ruelle クラスポテンシャルに話を限っても、Lennard-Jones 6-12ポテンシャルのように代表なものに対して証明されていない。

- (A) SDE の強解の存在と一意性 (上述の定理で得た解は、ブラウン運動だけの関数ではない)
- (B) SDE が解を持ち実際にに運動する部分集合の「明示的な」特徴付け。つまり非平衡問題。(上述の結果は、capacity ゼロの集合が、何になるかが明示的にはわからない)
- (C) 各粒子が爆発しないという条件 (A.5) の下での、Dirichlet 形式の拡張の一意性:この問題について、以下の結果が知られている。
- (A) に対しては、 $\Psi \in C_0^3(\mathbb{R}^d)$ (Lang, Fritz)、また、 Ψ がハードコアをもち、遠方で指数的に減少するという条件 (種村、種村-Roelly) という 2 種類の結果しかない。
- (B) に対しては、 $\Psi \in C_0^3(\mathbb{R}^d)$ かつ次元 d が 4 次元以下 (Fritz)。 1 次元 (Rost など)。
- (C) に対しては、ハードコア・ブラウンボール (種村)。

この講演では、Dirichlet 形式の方法によって、(A) をいかに解決するか、という問題について、可能性のあると思われる、一つのアイデアを説明する。

参考文献

- [1] Osada, H., Tagged particle processes and their non-explosion criteria, (to appear in J. Math. Soc Japan) available at arXiv:0905.3973
- [2] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials, (preprint) available at arXiv:0902.3561v1.
- [3] Osada, H., Infinite-dimensional stochastic differential equations related to random matrices, (preprint).