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Let S = R? and let S be the configuration space over S. Let 0:SxS—R? and b:SxS—R? U {A}
be measurable functions. Here A means an extra point. Let a = oo’. We assume there exists a positive
constant ¢; independent of (x,x) for each (z,x) € SxS such that

d
0< D apn(@, ))& < c1lé* for all € = (&,) € R™. (1)
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For X = (X%);en we set (X, X™*) = {(X{,X*)} € C([0,00); SxS) b
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We study the SDEs of the form:
dX} = o(X},X*)dB; + b(X],X*)dt (i € N). (2)

Let S = SY. Let & and b be the functions of (z, (z;)jen) defined on S x S being symmetric in

(xj)jen for each x and satisfying

(x, (z;)jen) Z Oz )5 b(x (%) jen) Z Oz )- (3)
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Then we can rewrite (2) as (4)
dX] = 6(X], (X]);2)dB} +b(X], (X]);z)dt (i € N), (4)

Let a = 56" Write a = [ag]1<k,1<a and b= (Bk)1§k§d~ Then intuitively the generator is

d
1 . 0
L:=— E g agi(si, (s5)jer52i) § :2 :bk siy (8)jeLii) 5~ (5)
2 < 85 8511 0s;
€N k,l=1 €N k=1
Here s; = (si1,...,5q) € R

Our strategy to solve SDE (2) (and (4)) is to use a geometric property behind the SDE (2). We
first consider invariant probability measure p of the unlabeled dynamics associated with (2). Namely, we
consider a probability measure p whose log derivatve d* satisfies b(z,y) = {V.a(z,y)+a(z,y)d"(z,y)}/2.
Here d* is the log derivative of the measure u! given by (6), and the definition of d* is given by (12).

Note that for a given pair (a, ), b is determined uniquely. We construct the unlabeled diffusion
associated with (a, p) by using the Dirichlet space given by (a, ) and prove the labeled process consisting
of each component of the unlabeled diffusion satisfies (2) and (4).

If there were a Dirichlet space associated with the the (fully) labeled diffusion X, we could use Ito
formula for each component X® and X°X/, and prove X satisfies (5) since all coordinate functions
2, 2%27 (i,j € N) would be in the domain of the Dirichlet space locally. We emphasize that no Dirichlet
spaces associated with the (fully) labeled diffusion X exist. So we instead introduce an infinite sequence
of Dirichlet spaces associated with the k-labeld process {((X},..., XF, Y iskOx ))} forall £ =0,1,....

This sequence of the k-labeld processes have some the consistency and satisfies the SDEs (2) and (4).



Let 1 be a probability measure on (S, B(S)). Let p* be the k-correlation function of ; with respect to
the Lebesgue measure. Let ;i be the measure on S* xS defined by

pF(AxB) = /A,ux(B)pk(X)dX. (6)
Here x = (z1,...,xk) € S* and dx = dzy - - - dxy,. Moreover, lix is the Palm measure conditioned at x:
k
ux:u(ofz&ds(xi)ZIforizl,...,k). (7)
i=1

We now introduce Dirichlet forms describing the k-labeled dynamics. For a subset A C S we define
the map 74:S—S by ma(s) =s(AN-). We say a function f:S—R is local if f is o[m4]-measurable for
some compact set A C S. We say f is smooth if f is smooth, where f ((s;)) is the permutation invariant
function in (s;) such that f(s) = f((s;)) for s = > ;i 0s,-

Let D, be the set of all local, smooth functions on S with compact support. For f,g € D, we set
D[f,¢]:S—R by
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Here s =), ds,, ;‘:ZJ#(SSJ,and $i = (Si1y+--,8id) € S.
For k € N let D = C§°(S*) ® D,. For f,g € DF let V&F[f, g] be such that

VRAf, gl(x,9) Z S a2 005) Daxs) (9)
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where x = (x1,...,73) € S¥ and z; = (z41,...,7iq) € S. We set D*F by
D*(f, gl(x,5) = V¥*[f, g](x,5) + D*[f(x,-), g(x;, )](s)- (10)

Let L2(u*) = L2(S* xS, k). Let (€%, D) be the bilinear form defined by

et ()= [ DML, DR (e DEN DG EF (L) <o) ()

We assume there exists a probability measure p on S satisfying (A.1)—(A.5):
(A.1) p* is locally bounded for each k € N.

(A.2) There exists d* = (d%,)m=1,..4 € {Li.(u')}? such that
/ d* fdu' = — V. fdu' for all f € DL. (12)
SXS SXS
Here V, f(z,s) = (%ﬁf))m:l,-»-,da where z = (x1,...,24). Moreover, the column vector d* satisfies
1 1
= f{V$a}d“ + fad”, be L (uh). (13)

Here V,a is the matrix defined by V,a = [22ma(2s)]

Oxn,

(A.3) (E€2F D2FY is closable on L2(p*) for each k € {0} UN.
(A.4) Cap”({Ss.i.}°) =
(A.5) There exists T' > 0 such that for each R > 0

r > 2
lim inf pt(x)dz} - A(———=) =0, where £(t) = (27 _1/2/ e "2 qu. 14
mint{ [ o) ) (0 =) (1)



Let (£2% D) be the closure of (£2%, D) on L2(u*). It is known that (£2F, D2*) is quasi-regular
and the associated diffusion exists. Cap” in (A.4) is the capacity of the Dirichlet space (£%°, D0 L2 (y)).

Theorem 1. Assume (A.1)—(A.5). Then there exists a set So € B(S) such that
/L(So) =1, So C Ss,i‘7 (15)

and that, for all s € k=(Sg), there exists a SN_valued continuous process X = (X")ien, and RN-valued

Brownian motion B = (B%);en satisfying

dX; = o(X{, Xi*)dB; +b(X;,X{*)dt (i € N) (16)
XO = 8. (17)
Moreover, X satisfies
P(k(X¢) €Sp, 0 <Vt <0) =1, (18)
P( sup |X}| < oo for allu € N,i € N) = 1. (19)
0<t<u

Let x:SN—S such that £((s;)) = >, 0s;. Let fpaen:C([0,00); SN)— C([0,00); S) such that kpaen(X) =
Zi 5X;'-

Theorem 2. (1) Let Sg be the subset of SN defined by So = k~(So). Let Py be the distribution of X
given by Theorem 1. Then {Pg}ses, is a diffusion with state space Sy.
(2) Let s = k(s). Let P be the distribution of X := kpatn(X). Then {Ps}ses, is a p-reversible diffusion

with state space Sq.

Example 1. Let ¥(x,y) be a Ruelle’s class potential that is smooth on {x # y}. Let ug be the associated
canonical Gibbs measures. Then (A.1)-(A.3) are satisfied. The sutablity of (A.4) and (A.5) is easily
checked.

Example 2. Let ¥ be the 2D Coulomb potential ¥(z) = —2log |z| (z € R?) with 8 = 2. Let d = 2.
Then the associated SDE becomes
Xi-X{

t Ot
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Theorem 3. Let pu be the Ginibre random point field. Then there exists a set S C (R?)N such that
P2 ienOz5% = (w;) € S}) = 1 and that (20) has a solution for all initial points x = (x;)ien € S.

Moreover, for all initial points x € S,
P(X; € SN Sgingle for allt) = 1.

Here Sgingle = {s = (s;) € (R*)N; s; # s ifi # j}. More precisely, there exist (R?)N-valued process
X = (X% ;en and Brownian motion B = (B*);en such that the pair (X, B) satisfies the SDE (20).

We remark that the DLR equation for u does not make sense. However, by (20) one can say p is a
measure with 2D Coulomb interaction potential ¥. Indeed, u is the reversible measure of the unlabeled
diffusion X; = Y7, x:, where the associated labeled dynamics X; = (X{) € (R*)" is the solution of
the infinitely dimensional SDE:



The Ginibre random point field 4 is a probability measure on the configuration S over R2. It is known
that p is translation and rotation invariant. Moreover, u is so called a determinantal random point field

whose n-correlation function p™ is given by

p"(ml,...,mn) = det[K(.’L‘i“’L‘j)hSi’an, (21)
where K :R? x R?—C is the kernel defined by
1 > [yl ap
K(z,y) = ;GXP(—7 - 7) e (22)

Here we identify R? as C by the obvious correspondence: R? > z = (z1,22) — x1 + v/ —1z3 € C, and
7 = y1 — v/ —1ly» means the complex conjugate under this identification.

The key point of Theorem 3 is to calculate the log derivative of the one moment measure pu' of the
Ginibre random point field pu.

The solution satisfies the second SDE:

Theorem 4. For each s € S, (X,B) in Theorem 3 satisfies

. , , Xi—XJ
dX! =dB! — X!dt + lim —t "t 4t (ieN 23
! R _Z_ X7 - X e %
[X{|<r, j#i

XO = 8. (24)
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