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In this talk, we prove the Laplace-type asymptotics for the solution of a rough differential equation
driven by (the lift of ) fractional Brownian motion of the Hurst parameter H (1/4 < H ≤ 1/2). This
is an ”FBM version” of the well-known result for SDEs driven by the usual Brownian motion. In this
talk. (stochastic or ordinary) differential equations are understood in the sense of the rough path theory.
Unlike the BM case (i.e., H = 1/2), the third level paths (the triple integrals) of FBM also play a role
when 1/4 < H ≤ 1/3.

A real-valued continuous stochastic process (wH
t )t≥0 starting at 0 is said to a fBm of Hurst parameter

H if it is a centered Gaussian process with

E[wH
t wH

s ] =
1

2
[t2H + s2H − |t − s|2H ], (s, t ≥ 0)

This process has stationary increments E[(wH
t −wH

s )2] = |t−s|2H (s, t ≥ 0), and the scaling properity, i.e.,

for any c > 0, (c−HwH
ct )t≥0 and (wH

t )t≥0 have the same law. Note that (w
1/2

t )t≥0 is the standard Brownian

motion. For d ≥ 1, a d-dimensional fBm is defined by (wH,1
t , . . . , wH,d

t )t≥0, where wH,i (i = 1, . . . , d) are

independent one-dimensional fBm’s. Its law µH is a probability measure on C0([0, 1],Rd). (Actually, it
is a measure on Cp−var

0 ([0, 1],Rd) for p > 1/H , or on Cα−hldr
0 ([0, 1],Rd) for α < H ).

For 2 < p < 4, let GΩp(R
d) denotes the geometric rough path space. A Rd-valued finite variational

path x ∈ C1−var
0 ([0, 1],Rd) is naturally lifted as an element of GΩp(R

d) by the followiing iterated Stieltjes
integral;

Xj
s,t =

∫

s≤t1≤···≤tj≤t

dxt1 ⊗ dxt2 ⊗ · · · ⊗ dxtj
. (1)

We say X is the smooth rough path lying above x. In a similar way, for 1 < q < 2, x ∈ Cq−var
0 ([0, 1],Rd)

can naturally be lifted, where the iterated integral in (1) should be understood in the sense of Young.
Let 1/4 < H ≤ 1/2 and 1/H < p < [1/H ] + 1. By Coutin-Qian’s result WH(m). i.e., the lift

of the dyadic piecewise linear approximation wH(m) converges a.s. in GΩp(R
d). We write WH :=

limm→∞ WH(m) and call it fractional Brownian rough path. (It is not possible to show the existence of
WH for 0 < H < 1/4 with their method. In a framework different from the original one of T. Lyons,
Tindel and Unterberger recently showed existence of the lift of wH for any H . This ”algebraic” framework
was proposed by M. Gubinelli and might be interesting.)

In this talk, we consider the following RDE; for ε > 0,

dY ε
t = σ(Y ε

t )εdWH
t + β(ε, Y ε

t )dt, Y ε
0 = 0. (2)

Here, σ ∈ C∞
b (Rn, Mat(n, d)) and β ∈ C∞

b ([0, 1] × Rn,Rn). Note that C∞
b denotes the set of bounded

smooth functions with bounded derivatives. Note also that Y ε is a GΩp(R
n)-valued random variable.

Let HH be the Cameron-Martin subspace of the d-dimensional fBm (wH
t )0≤t≤1. By Friz-Victoir’s

result, k ∈ HH is of finite q-variation for any (H + 1/2)−1 < q < 2. Hence, the following ODE makes
sense in the q-variational setting in the sense of the Young integration;

dyt = σ(yt)dkt + β(0, yt)dt, y0 = 0.

Note that y is again of finite q-variation and we will write y = Ψ(k).
Now we set the following assumptions. In short, we assume that there is only one point that attains

minimum of FΛ and the Hessian at the point is non-degenerate. These are typical assumptions for
Laplace’s method of this kind. The space of continuous paths in Rn with finite p-variation starting at
0 is denoted by Cp−var

0 ([0, 1],Rn). Note that the self-adjoint operator A in the fourth assumption turns
out to be Hilbert-Schmidt.

(H1): F and G are real-valued bounded continuous function on Cp−var
0 ([0, 1],Rn) for some p > 1/H .



(H2): The function FΛ := F ◦ Ψ + ‖ · ‖2
HH /2 attains its minimum at a unique point γ ∈ HH . We will

write φ0 = Ψ(γ).

(H3): F and G are m + 3 and m + 1 times Fréchet differentiable on a neighborhood U(φ0) of φ0 ∈
Cp−var

0 ([0, 1],Rn), respectively. Moreover, there are positive constants M1, M2, . . . such that

|∇jF (η)〈z, . . . , z〉| ≤ Mj‖z‖
j
p′−var, (j = 1, . . . , m + 3)

|∇jG(η)〈z, . . . , z〉| ≤ Mj‖z‖
j
p′−var, (j = 1, . . . , m + 1)

hold for any η ∈ U(φ0) and z ∈ Cp−var
0 ([0, 1],Rn).

(H4): At the point γ ∈ HH , the bounded self-adjoint operator A on HH , which corresponds to the
Hessian ∇2(F ◦ Ψ)(γ)|HH×HH , is strictly larger than −IdHH (in the form sense).

Now we state our main theorem. Under these assumptions, the following Laplace-type asymptotics
holds. (Below, Y ε,1 = (Y ε)1 denotes the first level path of Y ε);

Theorem 1 Let the coefficients σ : Rn → Mat(n, d) and β : [0, 1] × Rn → Rn be C∞
b . Then, under

Assumtions (H1) – (H4), we have the following asymptotic expansion as ε ց 0; there are real constants

c and α0, α1, . . . such that

E
[

G(Y ε,1) exp
(

−F (Y ε,1)/ε2
)]

= exp(−FΛ(γ)/ε2) exp(−c/ε) ·
(

α0 + α1ε + · · · + αmεm + O(εm+1)
)

.

The proof is similar to the one for Brownian rough path (i.e., the case H = 1/2). The following facts
are the keys; (i) A Fernique-type theorem for WH . (ii) A Cameron-Martin-type for WH . (iii) Taylor
expansion for the Itô map or RDE (2) around the minimum point γ ∈ HH . However, (iii) was done in
the speaker’s previous paper.

For those who understand the proof for Brownian rough path, the most difficult part is perhaps how to
treat elements of the Cameron-Martin space HH , in particular, the proof of the Hilbert-Schmidt property
of the Hessian A. Thanks to Friz-Victoir’s result, those Cameron-Martin paths are of finite q-variation
for some 1 < q < 2 such that 1/p + 1/q > 1. Thus, we can use Young integration theory.

Consider the short time problem for the law of Vt, which is a unique solution of the following RDE;

dVt = σ(Vt)dWH
t + b(Vt)dt, Y0 = 0.

Here, b : Rn → Rn is C∞
b , which is independent of small parameter ε this time. By the scaling property

of fractional Brownian rough path, the problem reduces to studying following RDE;

dY ε
t = σ(Y ε

t )εdWH
t + ε1/Hb(Y ε

t )dt, Y ε
0 = 0

Although fractional power of ε is involved, we can show that Theorem 1 above also holds for this case
since 1/H ≥ 1/2. As a result, under certain mild assumptions, we can prove the Laplace-type asymptotics
for the law of Vt as t ց 0.


