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1 Relativistic Schrödinger operators

Relativistic Schrödinger operator with vector potential a is defined formally by

H =
√

(p− a)2 +m2 −m+ V,

where p = −i∇, m denotes the mass of electron, a = (a1, ..., ad) vector potentials and

V an external potential. Let us suppose that a ∈ (L2
loc(Rd))d. Then the kinetic term

1
2
(p− a)2 can be defined through the quadratic form

(f, g) 7→ 1

2

d∑
µ=1

((pµ − aµ)f, (pµ − aµ)g).

The self-adjoint operator associated with this quadratic form is denoted by h. Under

the assumption 0 ≤ V+ ∈ L1
loc(Rd) and 0 ≤ V− is relatively form bounded with respect

to (1/2)p2, Then the relativistic Schrödinger operator is rigorously defined as a self-

adjoint operator on L2(Rd) by

H = (2h+m2)1/2 −m +̇V+ −̇V−.

Her ±̇ is the quadratic form sum. It can be seen that C∞0 (Rd) is a form core of H.

Let (Tt)t≥0 be the subordinator such that E[e−uTt ] = e−t(
√

2u+m2−m). In addition to

condistions on a and V mentioned above we furthermore suppose that ∇·a ∈ L1
loc(Rd).

Then by using the Brownian motion (Bt)t≥0 independent of the subordinator the path

integral representation of (f, e−tHg) is given by the theorem:

Theorem 1.1

(f, e−tHg) =

∫
dxEx,0

[
f(BT0)g(BTt)e

St
]
,

where the exponent St is given by −
∫ t

0
V (BTs)ds− i

∫ Tt
0
a(Bs) ◦ dBs.

From this path integral representation we can immediately see that e−tH is ultarcon-

tractive, i.e., e−tH maps Lp to Lq for all 1 ≤ p ≤ q ≤ ∞ for Kato-class potential. This

procedure includes not only relativistic Schrödinger operators, but also Schrödinger

operator with Bernstein function of the Laplacian, i.e. Ψ(h) + V for any Bernstein

function Ψ such that Ψ(0) = 0.
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2 QFT version

The Pauli-Fierz model is a model in the so-called nonrelativistic QED. This model can

be extended to a relativistic one. This model is defined on H = L2(Rd) ⊗F , where

F is a boson Fock space. Define

HP =
√

(p⊗ 1− αA)2 +m2 −m+ V ⊗ 1 + 1⊗Hrad,

where α ∈ R is a coupling constant, A denotes the quantized radiation field given by

Aµ =
∫ ⊕

Aµ(x)dx under the identification H =
∫ ⊕

Fdx and Aµ(x) by

Aµ(x) =
d−1∑
j=1

∫
ϕ̂(k)

|k|
eµ(k, j)

(
a†(k, j)e−ikx + a(k, j)e+ikx

)
dk.

a† and a satisfy canonical commutation relations [a(k, j), a†(k′, j′)] = δjj′δ(k − k′) and

{e(k, 1), ..., e(k, d − 1), k/|k|} forms an orthogonal base on the tangent space of the

d − 1-dimensional unit sphere at k, TkSd−1. Hrad is the free Hamiltonian defined by

Hrad =
∑d−1

j=1

∫
|k|a†(k, j)a(k, j)dk. In the case of α = 0 the Hamiltonian is

(
√
p2 +m2 −m+ V )⊗ 1 + 1⊗Hrad

and all the eigenvalues of
√
p2 +m2−m+V are embedded in the continuous spectrum

since σ(Hrad) = [0,∞). Thus to investigate the spectrum of HP but with α 6= 0

is a difficult issue. The boson Fock space is identified with the probability space

L2(M , µ0) with M = ⊕dS ′(Rd) endowed with a certain Gaussian measure µ such

that E[Aµ(f)Aν(g)] = 1
2

∫ ¯̂
f(k)ĝ(k)

(
δµν − kµkν

|k|2

)
dk. We can construct the functional

integral representation of (F, e−tHPG).

Theorem 2.1

(F, e−tHPG) =

∫
dxEx,0

[
e−

∫ t
0 V (BTs )ds

∫
E

F (A0, BT0)G(At, BTt)e
−iKtdµ

]
, F,G ∈H .

Here E is the Euclidean version of M and At is the Euclidean field with time t. The

exponent is of the form Kt =
∫ t

0
As (ϕ̃(· −Bs)) · dBs, where ϕ̃ is the inverse Fourier

transform of ϕ̂/|k|.

By means of this functional integral representation we can show that

1 HP is self-adjoint on D(
√
p2 ⊗ 1) ∩D(1⊗Hrad);

2 e−i(π/2)Ne−tHP ei(π/2)N is a positivity improving operator, where N denotes the

number operator ;

3 the ground state of HP is unique;

4 the ground state is spatially exponentially decay for m > 0.

These results can be extended to more general models of the form:

HΨ = Ψ

(
1

2
(p⊗ 1− αA)2

)
+ V ⊗ 1 + 1⊗Hrad

with an arbitrary Bernstein functions.


