ON BEHAVIORS OF MEASURE-VALUED MARKOV PROCESSES WITH IRREGULAR PARAMETERS

ISAMU DÔKU

Department of Mathematics, Saitama University

Let D be a domain of \mathbb{R}^d . Let $C_c^+(D)$ be the space of non-negative continuous functions on D with compact support. We denote by $C^{k,\eta}(D)$ the usual Hölder space with index $\eta \in (0, 1]$, which includes derivatives of order k, and in particular we simply write $C^{\eta}(D)$ instead of $C^{0,\eta}(D)$. Let L be an elliptic operator on the domain D of the form

(1)
$$L = \frac{1}{2} \nabla \cdot a \nabla + b \cdot \nabla$$
$$= \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right) + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i},$$

where the matrix $a(x) = (a_{ij}(x))$ is symmetric and positive definite for $x \in D$. Suppose that $a_{ij}(x) \in C^{1,\eta}(D)$ and $b_i(x) \in C^{1,\eta}(D)$ for $i, j = 1, 2, \ldots, d$. We often write

(2)
$$\langle \nu, f \rangle = \int_D f(x)\nu(\mathrm{d}x)$$

for the integral of measurable function f with respect to the measure ν on D.

We set $\mathcal{L}_0 = L + \beta$ on the domain *D*. Let λ_c be the generalized principal eigenvalue for \mathcal{L}_0 .

Theorem 1. Let $\lambda_c > 0$. Suppose that the operator $\mathcal{L} = L + \beta - \lambda_c$ is subcritical. Let $X = (X_t, \mathbb{P}_{\mu})$ be the (L, β, α, D) superprocess. Then we

have

2

(3)
$$\lim_{t \to \infty} e^{-\lambda_c t} \mathbb{E}_{\mu}[\langle X_t, g \rangle] = 0$$

for any g in the space $C_c^+(D)$.

Next we consider the behaviors of a class of measure-valued Markov processes with irregular parameters. Suppose that d = 1 for simplicity.

Let $X = (X_t, \mathbb{P}_{\mu})$ be the (L, δ_0, α) superprocess. We denote by λ the generalized principal eigenvalue for the operator $\mathcal{L} = L + \delta_0$, and we define $\mathcal{C} = \{u > 0; (\mathcal{L} - \lambda)u = 0\}$. Suppose that $\mathcal{C} \neq \emptyset$.

Theorem 2. Suppose that $\mathcal{L} - \lambda$ is critical. For $\varphi \in \mathcal{C}$, we have

(4)
$$\lim_{t \to \infty} e^{-\lambda t} \mathbb{E}_{\delta_x} \langle X_t, g \rangle = K \cdot \varphi(x),$$

for any $g \in C_c(\mathbb{R})$ with $K = (\varphi, g)_{L^2} / \|\varphi\|_{L^2}^2$.